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A B S T R A C T

In the presented study, a pipe penalization approach for the economic topology optimization of District
Heating Networks is proposed, drawing inspiration from density-based topology optimization. For District
Heating Networks, the upfront investment is a crucial factor for the rollout of this technology. Today, the pipe
routing is usually designed relying on a linearization of the underlying heat transport problem. This study
proposes to solve the optimal pipe routing problem as a non-linear topology optimization problem, drawing
inspiration from density-based topology optimization. The optimization problem is formulated around a non-
linear heat transport model and minimizes a detailed net present value representation of the heating network
cost. By relaxing the combinatorial problem of pipe placement, this approach remains scalable for large-scale
applications. In a design study on a realistic medium-sized network with 160 houses, a strong influence of
economic parameters on the optimal network topology was observed. For this case, the optimization algorithm
converges to a discrete network topology and near-discrete pipe design in about 10 min by using the proposed
intermediate pipe penalization strategy. The optimal discrete network design found by the algorithm showed
to outperform simple rounding post-processing steps by up to 2.8% of their respective net present value.
1. Introduction

District Heating Networks (DHNs) are a network technology con-
necting heat demands and supplies through a network of insulated
pipes carrying hot water. Due to its ability to connect a multitude
of different renewable heat sources and provide heat to districts and
entire cities, it is considered one of the core technologies to enable
carbon-neutral space heating [1]. In DHNs, the typically high upfront
investment cost of groundworks and piping is a core decision variable
for the feasibility of a development project. Therefore in the planning
phase it is useful to economically optimize the topology and design of
a heating network, posing a large-scale integer programming optimiza-
tion problem. In recent years, the field of topology optimization has
seen widespread application in structural mechanics, fluid flow, or heat
transfer problems. Here, challenging large-scale integer programming
problems are solved by initially relaxing the integer variables and later
steering it towards discrete solutions [2]. Due to this relaxation, the
approach remains scalable, and large optimal design problems can be
solved.

In contrast, to optimize network topologies, combinatorial opti-
mization approaches have traditionally been used (e.g. in transmission

∗ Corresponding author at: Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300 box 2421, 3001 Leuven, Belgium.
E-mail address: yannick.wack@kuleuven.be (Y. Wack).

expansion planning [3]). In these applications, networks can often be
accurately described as linear optimization problems, which can be
solved efficiently using Mixed-Integer Linear Program (MILP) solvers.
In this network tradition, the non-linear nature of the optimal topology
problem for District Heating Networks (DHN) has been relaxed by
linearizing the physical network model. The resulting Mixed-Integer
Linear Program (MILP) can be solved using combinatorial optimization.
Söderman [4], for example, optimized the structure and configuration
of a district cooling network using a MILP approach. Dorfner and
Hamacher [5] later used a linear approach to optimize the topology
and pipe sizes of a DHN. Haikarainen et al. [6] optimized the topology
and operations, while accounting for different production technologies
and heat storage. Mazairac et al. optimized the topology of a multi-
carrier network that incorporates gas and electricity [7] supply. Morvay
et al. [8] optimally designed the network while also optimizing the en-
ergy mix supplied. Using a MILP approach, Bordin et al. [9] optimized
the network topology while studying the set of consumers to optimally
connect to a DHN. Most recently, Resimont et al. [10] used a MILP
approach to optimize a city-scale heating network.
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The transformation of modern DHNs towards multi-source, low-
temperature networks [11], breaks the assumptions of most linear
heating network models that are used to aid in the design. To account
for different feasible temperature levels of supply and demand sites,
and to accurately model heat losses, a non-linear representation of the
network physics is necessary. The routing choice for DHN pipes as well
as the limitations of pipe diameters to manufacturer catalogues further
poses the optimal topology problem of DHNs a discrete optimization
problem. This Mixed Integer Non-Linear Program (MINLP) represen-
tation of the topology optimization problem can be solved directly
using heuristic approaches. Li and Svendsen [12], proposed a genetic
algorithm to optimize the network topology on the base of a non-linear
thermo-hydraulic network model. Recently, Allen et al. [13] deployed
both a minimal spanning tree heuristic and a particle swarm algorithm
to the topology optimization of a small district thermal energy system.
A few authors applied combinatorial optimization methods to network
topology and pipe design problems. Starting from a simplified network
model, Marty et al. [14] applied the DICOPT-GAMS MINLP solver to the
optimal design of a Rankine Cycle in combination with a small heating
network topology. The same solver was also used by Mertz et al. to
optimize the topological design and pipe sizing first for an academic
DHN study case [15] and later to optimize the design of a small network
with 19 houses [16]. In these publications directly solving the MINLP,
only small DHN design problems have been considered. The need to
solve a full MINLP containing many discrete variables renders most
heuristic and classic combinatorial optimization approaches inefficient
for the application to large DHN projects.

The computational complexity of solving said MINLP leaves poten-
tial to explore the application of topology optimization methods to
DHNs. A first step in this direction was published by the authors of
this paper in Blommaert et al. [17]. This paper focused on defining a
non-linear District Heating Model and developing a fast optimization
algorithm by using adjoint gradients on a simplified cost function for
heating network design. Additionally, a first proposal to achieve a
near-discrete design was made.

The most popular approach to ensure near-discrete design in
density-based topology optimization for problems constrained by par-
tial differential equations (PDEs), is the Solid Isotropic Material with
Penalization (SIMP) approach. Here, the discrete variable is replaced
with a continuous variable, and is steered towards a discrete solution
using implicit penalization [2]. By applying density-based topology
optimization for the first time to DHNs, we propose in this paper a
SIMP-like multi-material penalization approach to economically opti-
mize the topology of DHNs while achieving a near-discrete topology
and pipe design.

Building on the previous paper by the authors [17], three new
crucial contributions are elaborated here. First, the optimal design
problem is reformulated as an economical optimization problem, al-
lowing for accurate design studies of future DHN development projects.
This reformulation is laid out in Section 2.1. Second, as technological
(state) constraints play an important role in DHN optimization, the
optimization algorithm is rewritten using an Augmented Lagrangian
approach (See Section 3.2). Third, we propose a topology optimization
approach using pipe diameter penalization for optimal DHN design. It
is based on a penalization technique inspired by the SIMP method of
Bendsøe [18] and its multi-material application by Zou and Saitou [19].

2. The topology optimization problem, a compromise between
scalability and physical accuracy

DHNs are a network technology, connecting heat demands and
supply by a network of water carrying insulated pipes. They therefore
can be represented in a directed graph 𝐺(𝑁,𝐸), with 𝑁 the set of
all nodes and 𝐸 the set of all edges in the graph. We can further
subdivide the set of nodes 𝑁 into three subsets 𝑁prod ∪ 𝑁con ∪ 𝑁jun =
2

𝑁 , denoting the producer, consumer, and pipe junctions. Similarly,
Fig. 1. Minimal illustration of the components of a District Heating network and their
graph representation.

the set of edges 𝐸 is partitioned into the subsets 𝐸prod ∪ 𝐸hs ∪ 𝐸bp ∪
pipe = 𝐸, denoting the producer, consumer heating system, consumer
ypass edges, and edges representing (potential) pipes, respectively. To
ifferentiate between feed and return network, all node subsets 𝑁 as
ell as the edge subsets 𝐸pipe and 𝐸prod can be further subdivided into

eed and return components (e.g. 𝐸prod = 𝐸prod,f ∪𝐸prod,r). For simplicity
f further notation, edges representing the consumer heating system
nd bypasses are grouped as consumer edges 𝐸con = 𝐸hs ∪ 𝐸bp, and
ogether with the producer feed edges form the set of operational edges
op = 𝐸prod,f ∪ 𝐸con. The set definition of different DHN components

s illustrated in Fig. 1. We can now use the cardinality to determine
he number of components in each subset, e.g. the number of pipes in
he network: 𝑛pipe = |𝐸pipe|. In the following sections, we now denote

network node as 𝑛 ∈ 𝑁 and a directed edge going from node 𝑖 to
ode 𝑗 as (𝑖, 𝑗) ∈ 𝐸, or succinctly as 𝑖𝑗 ∈ 𝐸 or even more compactly as
∈ 𝐸 [17].

Defining the optimal topology and design problem of a DHN as a
athematical optimization problem requires the definition of design

ariables that are to be chosen in an optimal way. In the case of
HNs these design variables contain the pipe diameters 𝒅 ∈ 𝐷̂𝑛pipe ,
ith 𝑛pipe = |𝐸pipe| being the number of possible pipes in the network.
he pipe diameters in 𝒅 are chosen from a set of available discrete
ipe diameters 𝐷̂ = {𝐷0,… , 𝐷𝑚}, Here 𝐷0 represents the choice
f not placing a pipe. Therefore 𝒅 acts as the topological variable.
urthermore, an operational design variable 𝝋 = [𝜶, 𝜸]⊺ ∈ R|𝐸op| is
efined, containing the radiator and bypass valve setting 𝜶 ∈ R|𝐸con| as
ell as the normalized producer inflow 𝜸 ∈ R|𝐸prod,f |. To represent the
hysical state of a given network, a vector of physical variables 𝒙 =
𝒒,𝒑,𝜽]⊺ ∈ R2|𝑁||𝐸| is defined. It contains the flow rates 𝒒 ∈ R|𝐸|, nodal
ressures 𝒑 ∈ R|𝑁| and nodal and pipe exit temperature 𝜽 ∈ R|𝑁∪𝐸|.
he temperature 𝜽 = 𝑻 − 𝑇∞ is defined as the difference between the
bsolute water temperature 𝑻 ∈ R|𝑁∪𝐸| and the outside air temperature
∞.

Now the topology optimization problem for DHNs can be posed as
generic optimization problem of the form:

min
,𝝋,𝒙

 (𝒅,𝝋,𝒙) cost function

𝑠.𝑡. 𝒄(𝒅,𝝋,𝒙) = 0, model equations
𝒉(𝒅,𝝋,𝒙) ≤ 0, state constraints
𝒅 ∈ {𝐷0,… , 𝐷𝑚}

𝑛pipe

0 ≤ 𝝋 ≤ 1.

(1)

The three main components of this optimization problem will be
laborated in the following sections. First a cost function  (𝒅,𝝋,𝒙)
s defined in Section 2.1. Then a set of model equations 𝒄 (𝒅,𝝋,𝒙),
escribing the networks physics is defined in Section 2.2, and finally
dditional state constraints 𝒉 𝒅,𝝋,𝒙 are formulated in Section 2.3.
( )
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2.1. Cost function

In contrast to the previous publication by Blommaert et al. [17],
this paper aims at a detailed economic optimization. As the current bot-
tleneck for the development of DHNs is their high upfront investment
cost, it is important to accurately describe and optimize the economic
cost of a DHN project. To account for upfront and future cash flows, a
cost function is defined that maximizes the net present value 𝑁𝑃𝑉 [20,
p. 273] of a planned Heating Network:

 (𝒅,𝝋,𝒙) = −NPV (𝒅,𝝋,𝒙)
= 𝐽pipe,CAP (𝒅) + 𝐽h,CAP (𝝋,𝒙)

+ 𝑓OP
[

𝐽h,OP (𝝋,𝒙) + 𝐽p,OP (𝝋,𝒙)

− 𝐽rev (𝝋,𝒙)
]

, (2)

with

𝑓OP =
𝐴
∑

𝑡=1

1
(1 + 𝑒)𝑡

. (3)

ere we assume that cash flows over the investment horizon 𝐴 =
0 years remain constant. A discounting rate of 𝑒 = 5% is assumed.

The investment cost of piping 𝐽pipe,CAP is approximated with a linear
interpolation of the catalogue cost per meter 𝐶̂pipe = {𝐶pipe,1,… , 𝐶pipe,𝑚}
for the set of available discrete pipe diameters 𝐷̂ = {𝐷1,… , 𝐷𝑚}, result-
ing in the interpolation coefficients 𝜅1 and 𝜅0. The pipe investment cost
then reads:

𝐽pipe,CAP (𝒅) =
∑

𝑖𝑗∈𝐸pipe

(

𝜅1𝑑𝑖𝑗 +
1
2
𝜅̄0(𝑑𝑖𝑗 )

)

𝐿𝑖𝑗 . (4)

To smoothly account for the cost reduction of topological changes
(𝐽pipe,CAP

(

𝑑min
)

∶= 0), the fixed piping cost 𝜅̄0 is modelled similar to
Pizzolato et al. [21] using

𝜅̄0(𝑑𝑖𝑗 ) = 𝜅0

(

2
(1 + exp(−𝑘

(

𝑑𝑖𝑗 − 𝑑min
)

))
− 1

)

, (5)

∀𝑖𝑗 ∈ 𝐸pipe, with a steepness of 𝑘 = 600 and a minimum pipe diameter
of 𝑑min = 1 mm.

The investment cost for building heat production plants is calculated
using

𝐽h,CAP (𝒙) =
∑

𝑖𝑗∈𝐸prod,f

𝐶hC,𝑖𝑗𝑞𝑖𝑗 𝜃𝑖𝑗 𝜌𝑐p, (6)

ith 𝐶hC being the capacity price of heat production in e∕W. Here we
enote the water density with 𝜌 and the specific heat capacity of water
ith 𝑐p. The operational cost in e/year is calculated using

h,OP (𝒙) =
8760 h
year

∑

𝑖𝑗∈𝐸prod,f

𝐶hO,𝑖𝑗𝑞𝑖𝑗 𝜃𝑖𝑗 𝜌𝑐p, (7)

with the unit price of heat 𝐶hO in e∕Wh. The operational cost of pumps
at the heat production sites is computed with

𝐽p,OP (𝒙) =
1
𝜂
8760 h
year

∑

𝑖𝑗∈𝐸prod,f

𝐶pO,𝑖𝑗
(

𝑝𝑗 − 𝑝𝑎
)

𝑞𝑖𝑗 , (8)

here 𝑝𝑎 with 𝑎 ∈ 𝑁prod,r represents the corresponding pressure at the
eturn node of a producer. The unit pumping price is defined by the
lectricity price 𝐶pO in e∕Wh and the pump efficiency is given by 𝜂.
he investment cost for these pumps is calculated using

p,CAP (𝒙) =
1
𝜂

∑

𝑖𝑗∈𝐸prod,f

𝐶pC,𝑖𝑗
(

𝑝𝑗 − 𝑝𝑎
)

𝑞𝑖𝑗 , (9)

ith the pump capacity cost 𝐶pC in e∕W. To account for revenue by
selling heat to the connected consumers, the revenue cash flow

𝐽rev (𝒙) =
∑

𝑖𝑗∈𝐸hs

𝐶r,𝑖𝑗𝑄𝑖𝑗8760 h year−1, (10)

s introduced, with a heat selling price 𝐶r and the heat transferred to a
ouse 𝑄 defined by Eq. (A.8).
3

𝑖𝑗
Fig. 2. A flowchart illustrating the functioning of the proposed methodology. It consist
of three nested components: The pipe penalization ensuring near discrete pipe design,
the Augmented Lagrangian approach enforcing the technological (state) constraints and
the Quasi-Newton algorithm solving the resulting bound-constrained problem.

2.2. A nonlinear DHN model

In contrast to most district heating optimization studies, the opti-
mization model in this paper attempts to accurately capture the flow
and heat transfer physics within the network. Therefore, the optimiza-
tion is constrained by a set of non-linear model equations 𝒄(𝒅,𝝋,𝒙) =

for the thermal and hydraulic transport problem. The majority of
he network models used in this study were previously established in
lommaert et al. [17]. For consistency, they are briefly repeated in
ppendix A.

.3. Additional state constraints

In addition to satisfying the physical model defined in Section 2.2,
echnological constraints 𝒉(𝒅,𝝋,𝒙) ≤ 0 have to be defined to ensure that

a useful optimization problem is solved. For this study, it is required
that the heat demand 𝑄d,𝑖𝑗 ∀𝑖𝑗 ∈ 𝐸hs is satisfied for all consumer within
a margin of ±5%. This constraints can be formulated as:

±
(𝑄𝑖𝑗 −𝑄d,𝑖𝑗

𝑄d,𝑖𝑗

)

− 0.05 ≤ 0, ∀𝑖𝑗 ∈ 𝐸hs. (11)

3. Methodology

Now that the topology optimization problem for Heat Networks
has been defined, a methodology is proposed to solve this non-linear
discrete optimization problem. Assuming a superstructure of possible
pipe connections constituted by the street network of a neighbourhood
in question, a choice has to made whether a pipe is placed, and if so,
which available diameter is chosen. The set of available pipe diameters
is defined as 𝐷̂ = {𝐷0,… , 𝐷𝑚}, from which the pipe diameter 𝒅 is
chosen. To avoid resorting to combinatorial optimization techniques,
similar to density-based topology optimization methods, this problem
is reformulated as a continuous optimization problem:

min
𝒅,𝝋,𝒙

 (𝒅,𝝋,𝒙)

𝑠.𝑡. 𝒄(𝒅,𝝋,𝒙) = 0,

𝒉(𝒅,𝝋,𝒙) ≤ 0,

𝐷0 ≤ 𝒅 ≤ 𝐷𝑁 ,

0 ≤ 𝝋 ≤ 1.

(12)

The algorithmic steps taken to solve this continuous optimization prob-
lem and achieving near-discrete designs are described in the following
sections. A flowchart illustrating the proposed methodology can be
found in Fig. 2.



Energy 264 (2023) 126161Y. Wack et al.

w

𝛱

i
a

p

s
d

p
t
o
d

t
i
(
d
s
v
c

𝒅

Fig. 3. Intermediate diameter penalization for multiple available discrete pipe di-
ameters 𝑑𝑖𝑗 ∈ {𝐷0 ,… , 𝐷3}, for different penalization parameters 𝜉 and directions
𝑎.

3.1. Achieving near-discrete design: a SIMP-like penalization approach

By reformulating the topology optimization problem in the afore-
mentioned continuous way, the need arises to steer the design towards
a discrete solution. This is typically done by using penalization tech-
niques [2]. With the need to pick the optimal diameter from a set
of available discrete diameters, this problem strongly resembles multi-
material topology optimization problems. These types of problems are
often solved by introducing multiple density variables [22, p. 120].
To reduce the amount of topology variables, we propose to penalize
intermediate diameters between available pipes with a multi-material
SIMP like approach, similar to the ordered SIMP interpolation by Zou
and Saitou [19]. In this approach, normalized densities of multiple
materials are sorted by their elastic modulus, to then be described by
a single density variable. The sum of normalized densities, or here
diameters, can be written as:

𝑑𝑖𝑗
(

𝑑𝑖𝑗 , 𝜉, 𝑎
)

=
𝑁
∑

𝑘=0
𝛥𝐷𝑘 min

(

max
(

𝛱
(

𝑑𝑖𝑗
)

, 0
)

, 1
)

, (13)

ith

(

𝑑𝑖𝑗 , 𝜉, 𝑎
)

=

⎧

⎪

⎨

⎪

⎩

tanh
(

𝜉
𝑑𝑖𝑗−𝐷𝑘
𝛥𝐷𝑘

−𝑎
)

tanh(𝜉) + 𝑎 if 𝜉 > 0
𝑑𝑖𝑗−𝐷𝑘
𝛥𝐷𝑘

if 𝜉 = 0
, (14)

where ∀𝑖𝑗 ∈ 𝐸pipe and 𝛥𝐷𝑘 = 𝐷𝑘+1 − 𝐷𝑘. An illustration of this
interpolation can be found in Fig. 3. Intermediate diameters between
the discrete options are penalized using a tanh function, though it
s equally possible to use a power law, as is common in the SIMP
pproach. For this penalization, the parameter 𝜉 ∈ R≥ controls the

steepness, while the direction of penalization is controlled with 𝑎 ∈
{0, 1}.

To achieve a penalization of intermediate diameters, similar to
the material property interpolation in the SIMP approach, the pipe
diameter variable 𝒅 in the optimization problem is substituted with the
enalized diameter 𝒅̄ (𝒅, 𝜉, 𝑎). In the model equations, this leads to an

increased hydraulic friction 𝑓𝑖𝑗 for 𝑎 = 1 (compare Eq. (A.1)),

𝑓𝑖𝑗 = 0.3164
(

4𝜌|𝑞|
(𝜋𝜇𝑑)

)− 1
4

∀𝑖𝑗 ∈ 𝐸pipe,

ubsequently increasing the hydraulic resistance for intermediate pipe
iameters as illustrated in Fig. 4.

Penalizing the pipe diameter in the pipe energy equations for 𝑎 =
0, leads to a decreased thermal resistance 𝑅 of the pipe insulation
4

𝑖𝑗
Fig. 4. Penalization of intermediate diameters through the hydraulic resistance of
pipes for different penalization parameters 𝜉 and a set of available pipe diameters
𝑑𝑖𝑗 ∈ {𝐷0 , 5 cm, 12.5 cm, 20 cm}.

Fig. 5. Penalization of intermediate diameters through the thermal resistance of the
pipe insulation for different penalization parameters 𝜉 and a set of available pipe
diameters 𝑑𝑖𝑗 ∈ {𝐷0 , 5 cm, 12.5 cm, 20 cm}.

(compare Eq. (A.3)) for intermediate diameters:

𝑅𝑖𝑗 =
ln(4ℎ∕(𝑟𝑑𝑖𝑗 ))

2𝜋𝜆g
+ ln 𝑟

2𝜋𝜆i
∀𝑖𝑗 ∈ 𝐸pipe.

This decreasing thermal resistance is illustrated in Fig. 5.
Similar, a direct penalization is achieved in the pipe investment

cost (compare Eq. (4) for 𝑎 = 0) and is illustrated in Fig. 6. These
enalizations render intermediate diameters less interesting for the op-
imizer through increased total costs. In this substitution, the direction
f penalization 𝑎 is chosen in such a way as to make intermediate
iameters unfavourable in the optimization.

Introducing a high penalization 𝜉, causes an ill-conditioning of
he optimization problem, that can hinder convergence. To avoid this
ll-conditioning, a reformulation of the initial optimization problem
Eq. (12)) as a partially-reduced space formulation is proposed. The
etailed reformulation can be found in Appendix B. It leads to a new
ystem of model equations 𝒄̃

(

𝒅̄, 𝝋̃,𝒙
)

= 0 with the new design variable
ector 𝝋̃ = [𝜸̃, 𝜶̃]⊺ ∈ R|𝐸op| and the new set of state constraint 𝒉̃(𝒅̄, 𝝋̃,𝒙),
onstituting the adapted optimization problem:

min
̄ ,𝝋̃,𝒙


(

𝒅̄, 𝝋̃,𝒙
)

𝑠.𝑡. 𝒄̃(𝒅̄, 𝝋̃,𝒙) = 0,

𝒉̃(𝒅̄, 𝝋̃,𝒙) ≤ 0,

𝐷0 ≤ 𝒅̄ ≤ 𝐷𝑁 ,

(15)
0 ≤ 𝝋̃ ≤ 1.



Energy 264 (2023) 126161Y. Wack et al.

{

p
o
a
m
l
o

m

3

m
l
a
d
t
p

g
e

w
L



ed

c
r
i
i
a
t

p
i

3

a
s
s
v
t
p
f

s
p
b
s

p
h
t
p
t
𝑇

c

4

m
d
t
a

Fig. 6. Penalization of intermediate diameters in the investment cost 1
𝐿
𝐽pipe,CAP for

different penalization parameters 𝜉 and a set of available pipe diameters 𝑑𝑖𝑗 ∈
𝐷0 , 5 cm, 12.5 cm, 20 cm}.

As is practice in PDE-constrained optimization, the optimization
roblem (15) is not solved directly, because it would require the
ptimization of both design variables 𝒅̄, 𝝋̃ and state variable 𝒙. To
void the costly exploration within the feasible region of the physical
odel, we enforce that 𝒙

(

𝒅̄, 𝝋̃
)

is a solution to the system of non-
inear model equations 𝒄̃(𝒅̄, 𝝋̃,𝒙

(

𝒅̄, 𝝋̃
)

) = 0. This leads to a reduced
ptimization problem:

in
𝒅̄,𝝋̃

̂
(

𝒅̄, 𝝋̃
)

= 
(

𝒅, 𝝋̃,𝒙
(

𝒅̄, 𝝋̃
))

𝑠.𝑡. 𝒉̂(𝒅̄, 𝝋̃) = 𝒉̃(𝒅̄, 𝝋̃,𝒙
(

𝒅̄, 𝝋̃
)

) ≤ 0,

𝐷0 ≤ 𝒅̄ ≤ 𝐷𝑁 ,

0 ≤ 𝝋̃ ≤ 1.

(16)

.2. Optimization using Augmented Lagrangian approach

To solve the reduced optimization problem in Eq. (16), an Aug-
ented Lagrangian approach is proposed. In the previous paper pub-

ished by the authors [17], a Sequential Quadratic Programming (SQP)
lgorithm was used to include state constraints. This method has the
rawback that it requires one gradient evaluation per constraint and
he convergence of SQP solvers can be sensitive to infeasible starting
oints.

To avoid this, the algorithm was adapted to an Augmented La-
rangian approach. For this, Eq. (16) is first reformulated as an
quality-constrained problem by introducing a slack variable 𝒔: 𝒉̂(𝒅̄, 𝝋̃)+
𝒔 ∶= 𝒈̂

(

𝒅̄, 𝝋̃, 𝒔
)

= 0 and 𝒔 ≥ 0. The optimization problem is then
solved by solving a series of subproblems with increasing constraint
penalization 𝜇:

min
𝒅̄,𝝋̃,𝒔


(

𝒅̄, 𝝋̃, 𝒔,𝝀;𝜇
)

𝑠.𝑡. 𝒔 ≥ 0,

𝐷0 ≤ 𝒅̄ ≤ 𝐷𝑁 ,

0 ≤ 𝝋̃ ≤ 1.

(17)

here the equality constraints are incorporated into an augmented
agrangian:

(

𝒅̄, 𝝋̃, 𝒔,𝝀;𝜇
)

= ̂
(

𝒅̄, 𝝋̃
)

−
𝑚
∑

𝑘=1
𝜆𝑘𝑔̂𝑘

(

𝒅̄, 𝝋̃, 𝒔
)

(18)

+
𝜇
2

𝑚
∑

𝑘=1
𝑔̂2𝑘

(

𝒅̄, 𝝋̃, 𝒔
)

. (19)

The resulting optimization sub-problems then reduce to bound-constrain
subproblems. Similar to Blommaert et al. [17], these subproblems are
5

H

solved using a Quasi-Newton method in which the gradient ∇ is
omputed using the discrete adjoint method. Hessian information is
etrieved using a BFGS algorithm. It should be noted that in each
teration only a single adjoint calculation of the Augmented Lagrangian
s needed, in contrast to directly applying the SQP approach, for which
n additional adjoint gradient is needed for each state constraint. Once
his subproblem has been approximately solved, the multipliers 𝝀 and

the penalty parameter 𝜇 are updated and the process is repeated [23,
. 520]. The proposed optimization approach constitutes the core of an
n-house tool called PATHOPT that is written in MATLAB.

.3. Continuation and smoothing

Applying a diameter penalization of 𝜉 > 0 introduces a multitude of
dditional local optima into the optimization problem. To avoid getting
tuck prematurely in these local optima, a numerical continuation
trategy is employed, gradually forcing the optimization to discrete
alues. In this approach, a series of optimizations is run, each using
he optimum of the previous run as an initial guess. In this way, the
enalization parameter is slowly increased in every continuation step
ollowing 𝜉 = {0, 2, 4}.

The penalization also introduces non-differentiabilities at the de-
ired available diameters (see Figs. 6, 4 and 5) into the optimization
roblem, which pose an additional challenge for the use of gradient-
ased optimization algorithms. To alleviate this problem, the non-
moothness originally introduced by the min function in Eq. (13), is

eliminated using a smooth approximation.1

4. Demonstration on an academic optimal heat network design
problem

In this section, the topology optimization algorithm is tested on an
academic heat network problem. First, the correct convergence of the
augmented Lagrangian treatment of the state constraints towards fea-
sibility is verified in Section 4.2.1. Then, the importance of a detailed
economic problem formulation is discussed in Section 4.2.2. Finally, the
correct functioning of the novel multi-material topology optimization
algorithm for heat network optimization is analysed in Section 4.2.3.

4.1. Case set-up

To test the topology optimization algorithm, an academic test case is
set up. Here, a DHN is planned for a neighbourhood in Genk, Belgium.
In this neighbourhood, 160 potential heat consumers of varying heat
demands (𝑄d,𝑖𝑗 ∈ {25 kW, 35 kW, 55 kW}) are to be connected to two
heat suppliers. A high temperature heat source at 𝜃 = 70 ◦C (e.g. a gas
ower plant) and a low temperature source at 𝜃 = 55 ◦C (e.g. a waste
eat source like a data centre). Designing the optimal heat network
hat connects demand and supply, is posed as a topology optimization
roblem, using the neighbourhoods street grid as a superstructure. For
his optimization a worst-case scenario with an outside temperature of
∞ = −8 ◦C is assumed. The set-up is illustrated in Fig. 7.

The properties within the optimization problem (17) for this test
ase are summarized in Table 1.

.2. Results

The topology optimization problem is now solved using the above
entioned algorithm. In this first part of the analysis continuous pipe
iameters are tolerated, so the proposed penalization method of Sec-
ion 3.1 is not yet used (𝜉 = 0). The result with an active penalization
re discussed in Section 4.2.3.

1 The min function can be reformulated as min (𝑎, 𝑏) = −𝑓 (−𝑎 + 𝑏) + 𝑏 using
the rectifier function 𝑓 (𝑥) = max (𝑥, 0). This rectifier function is then smoothly
approximated using the Gaussian Error Linear Unit function 𝑓 (𝑥) ≈ 𝑥𝛩 (𝑥) by

endrycks and Gimpel [24].
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Table 1
Properties of the topology optimization problem used
in this test case.

Property Value Unit

𝐶hC,𝑖𝑗 ∈ {1000, 0} ekW−1 [15]
𝐶hO,𝑖𝑗 ∈ {0.01, 0.01} ekWh [15]
𝐶pC 100 ekW
𝐶pO 0.11 ekWh
𝛾𝑖𝑗 ∈ {70, 55} ◦C
𝜌 983 kg∕m3

𝜇 4.67 × 10−4 Pa s
𝑐p 4185 J∕kgK
𝑇∞ −8 ◦C
𝜆g 1 Wm−1 K
𝜆i 0.0225 Wm−1 K
ℎ 1 m
𝑟 1.87 1
𝜂 0.81 1
𝐶r 0.08 ekWh
𝑄d,𝑖𝑗 ∈ {25, 35, 55} kW
𝛷𝑖𝑗 ∈ {450, 650, 1000} W∕K𝑛

𝑛𝑖𝑗 ∈ {1.42, 1.2, 1.2} 1
𝐷̂ {1, 3, 7, 11, 15, 20} cm
𝐶̂pipe 400 + {180, 195, 234,… em−1

275, 400, 461}

Fig. 7. Initial superstructure for the topology optimization problem for a district
heating network test case. It connects two heat sources (north & south-east) with 160
consumers represented by coloured circles.

Fig. 8. Distribution of the heat demand satisfaction 𝑆 of all consumers before (left)
and after the optimization (right). The feasible region defined by constraint (11) is
shown in green.

4.2.1. Correct state constraint treatment
First, the correct treatment of state constraints with the Augmented

Lagrangian approach is verified. To this end, the heat demand satisfac-
tion 𝑆 =

(

𝑄𝑖𝑗−𝑄d,𝑖𝑗
𝑄d,𝑖𝑗

)

, is plotted for all consumers both at the beginning
and end of the optimization in Fig. 8. It can be observed that the heat
demand of all consumers is indeed met. The Augmented Lagrangian
approach is therefore indeed able to enforce state constraints without
the need for an additional warm-start (As compared to Blommaert
et al. [17]).

4.2.2. On the importance of an economic cost function
Now the resulting optimal network topology is plotted in Fig. 9.
6

Fig. 9. Optimal heat network topology with equal heat acquisition prices 𝐶hO =
0.5 ct∕kWh for both heat producers. Heat production facilities are represented by icons.
The optimal pipe diameter is shown with the line-thickness, while the line-colour
represents the water temperature within the pipe.

Fig. 10. Shift of network topology when lowering the heat acquisition price of the
southern waste heat source to 𝐶hO = 0.5 ct∕kWh. More houses are now connected to the
low temperature source. The optimal pipe diameter is represented by the line-thickness,
while the line colour represents the water temperature within the pipe.

It can be observed that the optimal heat network topology for this
case contains two individual networks. One provided by the northern
producer at a high temperature (≈ 70 ◦C), the other by the south-
eastern producer at a lower temperature (≈ 55 ◦C). In contrast to typical
applications of PDE-constrained topology optimization, where the cost
function is often chosen as a physical quantity that is to be minimized,
such as the structural compliance in structural optimization problems
(see Bendsøe and Sigmund [22]) or the mean temperature in heat
transfer optimization problems (e.g. Yu et al. [25]), the net present
value is directly maximized here. The net present value of the optimized
design amounts to NPV = 19.157Me.

For DHNs, it is beneficial to take the economic perspective. Indeed,
topology optimization here aids in the investment decision of a complex
energy system. Moreover, it has the advantage of allowing to use
a topology optimization strategy to study the influence of economic
parameters (e.g. the producer heat price 𝐶hO) on the final cost of the
network. To highlight this, a design study is done on the heat OPEX
parameter 𝐶hO of the waste heat source in the south-east. To evaluate
the influence of a different heat pricing scenario, the heat acquisition
price of this source is decreased to 𝐶hO = 5 ct∕kWh. When connecting
a waste heat source, this can be acceptable as this heat is otherwise
unused. The optimal network topology for this scenario can be seen in
Fig. 10.

It is apparent, that the topology shifted and more houses are now
connected to the low temperature waste heat source as this heat can be
acquired at a lower cost. This is also visible in the increase in NPV of
the network to 24.267Me. The limit to the size of the low-temperature
waste heat network is given by the temperature-dependent efficiency of
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Fig. 11. Discrete DHN topology and pipe design after using the pipe penalization
strategy. The pipes are chosen from 𝑑𝑖𝑗 ∈ {𝐷0 , 1 cm, 3 cm, 7 cm, 11 cm, 15 cm, 20 cm}, void
(no pipe) is represented by a yellow line.

the consumer heating systems. The fact that the optimal configuration
results from a balance between heat acquisition cost and heating system
efficiency illustrates well the importance of combining an extensive
economical analysis with a detailed physics model of the heat network.

4.2.3. Near-discrete pipe design
In order to build an optimal heat network, near-discrete pipe de-

sign has to be achieved. For this, the pipe penalization strategy from
Section 3.1 is applied to the test case of Section 4.1 with a set of
available pipe diameters of {𝐷0, 1, 3, 7, 11, 15, 20} cm. For this case, the
algorithm converges to a discrete topology and near-discrete pipe de-
sign in 11 min on a single 1.9 GHz processor core. The resulting optimal
topology and near-discrete pipe diameter is visualized in Fig. 11. It
can be seen that in contrast to the previous continuous optimizations
(Figs. 9 & 10), distinct discrete jumps between the available discrete
diameters are visible.

To show that near-discrete design was indeed achieved, the evolu-
tion of pipe diameters in the network over the optimization iterations is
plotted in Fig. 12. Additionally the continuation steps on the penaliza-
tion parameters are plotted on the upper abscissa. It can be seen that
starting from wide distribution of diameters for 𝜉 = 0, the diameters
tend towards discrete values with increasing penalization (𝜉 = 2&𝜉 =
4). The design evolution plot also unveils that a few non-discrete
(‘‘grey’’) variables remain after the final penalization step (between the
discrete pipe sizes of 1 and 3 cm). These grey design variables are a
common phenomenon in topology optimization and further steps could
be taken to eliminate them (e.g. bu further increasing the penalization
or by using the Heavyside Projection method by Guest [26]).

The NPV of the discrete network is, as expected, with NPV =
14.612Me lower than the NPV = 16.227Me of an optimal network
with continuous pipe design. To evaluate if the novel pipe penalization
strategy leads to better discrete designs then a simple post-processing
step (e.g. rounding up of the continuous design), a comparative study
is conducted. Here, the NPV of the optimal discrete network design is
compared to the NPV of a rounded design, starting from the optimal
continuous diameters. The results of this study, for multiple discrete
sets of available pipe diameters (1 = {1, 3, 7, 11, 15, 20} cm, 2 =
{3, 7, 15, 20} cm, 3 = {3, 11, 20} cm), can be seen in Fig. 13.2 It is noted
that for a clean cost comparison, the grey designs of the topology
optimization are also rounded to the next pipe diameter.

First, an improvement of 172 ke over simple rounding-up can be
achieved for pipe catalogue 1. The study shows that an improvement

2 Note the counter-intuitive increase in the NPV from 1 to 2. This can be
explained by the non-convex nature of the optimization problem, because of
which we can only guarantee convergence to a local optimum. In this case, it
is clear that a better local optimum can be found for 1, namely the solution
of  and  .
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2 3
Fig. 12. Evolution of the pipe diameters 𝑑𝑖𝑗 , ∀𝑖𝑗 ∈ 𝐸pipe in the heat network with the
optimization iterations. The increasing penalization 𝜉 ∈ {0, 2, 4} is plotted in the upper
abscissa. Pipe diameters converge towards discrete values for increasing penalization
values 𝜉. To keep the plot clear, only a random subset of the diameters is shown here.
The full plot is shown in Appendix C.

Fig. 13. NPV of the optimal heat network topology for different sets of available
pipe diameters 𝑘 (1 = {1, 3, 7, 11, 15, 20} cm, 2 = {3, 7, 15, 20} cm, 3 = {3, 11, 20} cm).
Here, the proposed penalization method is compared to a simple rounding up post-
processing. The penalization method increasingly outperforms ‘‘rounding’’ with an
increasing scarcity |𝑘| of the available pipe diameters.

can be achieved for all three tested pipe catalogues 𝑘 and that the
magnitude of improvement increases with the scarcity of that catalogue
|𝑘|. If the optimization is constrained to only three available pipe
diameters 1, an improvement of 453 ke was achieved over simple
rounding, amounting to a relative improvement of 2.8% in reference to
the NPV0 of the optimization case allowing for continuous pipe diam-
eters. This shows that the newly introduced pipe penalization strategy
has added value for topology optimization of heat networks and could
significantly reduce the investment cost of future DHN development
projects. Such reduction is of major importance. Despite having great
long term economic and ecological potential, DHN project feasibility
is often hampered by the high initial cost compared to competed
technologies. Piping infrastructure, and more specifically material cost,
can account for up to 60% of the total cost in the early stages, clearly
illustrating the potential impact and gains of an optimized approach.

5. Conclusion

In this paper, we proposed a pipe diameter penalization strategy for
the topology and pipe diameter optimization of heating networks. The
penalization method efficiently produces optimal network topologies
and near-discrete pipe designs for the economic optimization of a
medium-sized District Heating Network project, without resorting to
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combinatorial optimization. For the studied medium sized network, the
algorithm converges to a discrete topology in about 10 min. The result-
ing discrete network designs has a consistently higher net present value
then discrete networks designed using a simple post-processing step.
This gain in net present value from using the topology optimization
approach increases with the scarcity in available pipe diameter choices.
A maximum improvement in net present value of 2.8% was achieved
for an optimal design with only three available pipe diameters.

In addition, the optimization problem was reformulated as an eco-
nomical problem taking an investors perspective. Since the upfront
investment costs are a primary factor for assessing district heating
network design, a methodology is presented that allow to directly
optimize the full net present value assessment of the heating network.
It was shown for a medium sized District Heating Network project
how economic parameters influence the optimal network topology. A
decrease in the heat acquisition price of a waste heat source increased
the amount of consumers connected to that source, ultimately increas-
ing the share of waste heat in the optimized network. This case study
highlights the potential of economic topology and design optimization
based on a detailed physics model especially in the early design phases
of District Heating Networks. Next, an Augmented Lagrangian approach
for the treatment of state constraints, like satisfying the heat demand
for all consumers, was introduced. The approach manages to satisfy the
state constraints without the need for warm-starting the optimization.

This novel application of topology optimization methods to optimal
District Heating Network design proves to be a valuable alternative to
common combinatorial approaches in the field. The method is shown
to produce near-discrete optimal network topologies and pipe designs,
while maintaining physical accuracy with non-linear network models.
Further research should aim at a detailed comparison of the perfor-
mance of the topology optimization approach to that of combinatorial
approaches.

Finally, a fast and accurate optimization framework as presented
in this work would allow to accurately perform scenario analysis of
District Heating Networks on large scale and provide much needed
support towards (decentralized) energy network planning. For a next
step, the economic impact of large-scale non-linear optimization on
real world District Heating Network project will therefore be studied.
Further research should be conducted on reducing remaining grey
pipe design, and on further improving the detail of the heating net-
work model. Discrete pipe diameter optimization could be extended to
include insulation, pipe material, and market mechanisms; e.g. mass-
produced pipes with limited diameter choices versus tailored solutions.
Finally, the approach should be tested on a real world development
project and its modelling assumptions further validated with real world
data or against other modelling approaches.

CRediT authorship contribution statement

Yannick Wack: Conceptualization, Methodology, Software, Visual-
zation, Writing – original draft. Martine Baelmans: Conceptualiza-
ion, Funding acquisition, Writing – review & editing. Robbe Salen-
ien: Conceptualization, Funding acquisition, Writing – review & edit-

ng. Maarten Blommaert: Conceptualization, Methodology, Software,
upervision, Funding acquisition, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

A data-set including the structure, input parameters and optimiza-
ion results of the heating network used in the test case of this paper
s available at the following link: https://doi.org/10.48804/56GXSC.
he optimization results can be replicated using the methodology and
ormulations described in this paper.
8

i

cknowledgements

Yannick Wack is funded by the Flemish institute for technological
esearch (VITO), Belgium. Robbe Salenbien is supported via the en-
rgy transition funds project ‘EPOC 2030-2050’ organized by the FPS
conomy, S.M.E.s, Self-employed and Energy.

unding

The authors did not receive support from any organization for the
ubmitted work.

thical approval

This article does not contain any studies with human participants
r animals performed by any of the authors.

ppendix A. Full nonlinear DHN model

The majority of the network models used in this study were previ-
usly established in Blommaert et al. [17]. For consistency, they are
riefly repeated in this section. Some changes were made to increase
he stability of model and optimization convergence, which will be
urther detailed in this section.

.1. Pipe model

In DHNs water is generally used as the carrier fluid, with a con-
tant density 𝜌, dynamic viscosity 𝜇, and specific heat capacity 𝑐p.

Temperature-dependence of these fluid properties is neglected. In the
example elaborated in Section 4.2, the values will be taken as corre-
sponding to a water temperature of 60 ◦C. To model the momentum
equations over a pipe, we use the empirical Darcy–Weisbach equation,
modelling the viscous pressure drop in incompressible flow as a func-
tion of the volumetric flow rate 𝑞𝑖𝑗 through a pipe (𝑖, 𝑗) with length 𝐿𝑖𝑗 :

(𝑝𝑖 − 𝑝𝑗 ) = 𝑓𝑖𝑗
8𝜌𝐿𝑖𝑗

𝑑5𝑖𝑗𝜋2
|𝑞𝑖𝑗 |𝑞𝑖𝑗 , ∀𝑖𝑗 ∈ 𝐸pipe, (A.1)

ith 𝑓𝑖𝑗 = 0.3164 (𝑅𝑒)−
1
4 , ∀𝑖𝑗 ∈ 𝐸pipe. (A.2)

In contrast to Blommaert et al. [17], the Darcy friction factor 𝑓𝑖𝑗 is
modelled with the Blasius correlation [27]. Here 𝑑𝑖𝑗 denotes the inner
diameter of the pipe and 𝑅𝑒 the Reynolds number, defined as 𝑅𝑒 =
4𝜌|𝑞|
(𝜋𝜇𝑑) . The non-differentiability of |𝑞| at 𝑞 = 0 is regularized using a
cubic fit.

Next, the heat loss of an insulated pipe, installed underground is
modelled similar to Van der Heijde et al. [28]. Let us consider 𝜃𝑖 to be
he temperature difference at the node 𝑖, at which the flow enters the

pipe 𝑖𝑗, and 𝜃𝑖𝑗 at the pipe exit. The pipe exit temperature 𝜃𝑖𝑗 , due to
heat loss to the environment is given by

𝜃𝑖𝑗 = 𝜃𝑖 exp
( −𝐿𝑖𝑗

𝜌𝑐p|𝑞𝑖𝑗 |𝑅𝑖𝑗

)

, ∀𝑖𝑗 ∈ 𝐸pipe, (A.3)

ith 𝑅𝑖𝑗 the thermal resistance per unit pipe length between the water
nd the environment. For a pipe with outer insulation casing diameter
𝑜,𝑖𝑗 that is assumed to be bigger than the inner diameter 𝑑𝑖𝑗 by a fixed

ratio, i.e. 𝑟 = 𝑑𝑜,𝑖𝑗
𝑑𝑖𝑗

, the combined thermal resistance of pipe and soil per
unit length is [29]

𝑅𝑖𝑗 =
ln(4ℎ∕(𝑟𝑑𝑖𝑗 ))

2𝜋𝜆g
+ ln 𝑟

2𝜋𝜆i
, (A.4)

ith 𝜆i and 𝜆g the thermal conductivity of the insulation and the
urrounding ground, respectively, and ℎ the depth at which the pipe

s buried.

https://doi.org/10.48804/56GXSC
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A.2. Pipe junction model

All nodes in the network represent pipe junctions. For the incom-
pressible flow under consideration conservation of mass reduces to
conservation of the flow rate 𝑞 :
∑

𝑎
𝑞𝑎 −

∑

𝑏
𝑞𝑏 = 0, (A.5)

where 𝑞𝑎 with 𝑎 = (𝑖, 𝑛) ∈ 𝐸 denotes the flow of incoming edges and 𝑞𝑏
with 𝑏 = (𝑛, 𝑗) ∈ 𝐸 the flow of outgoing edges of a Node 𝑛 ∈ 𝑁 .

Similarly, the temperatures in the node can be determined by con-
servation of the convected energy. Within the junction, perfect mixing
of the incoming flows is assumed. So outgoing flows leave at the node
temperature 𝜃𝑛. Note that no assumption is made on the direction of the
flows and that depending on the sign of the flow rate 𝑞 in the directed
edges connected to the node, the flow will either enter or leave the
junction. Energy conservation can thus be formulated as
∑

𝑎

(

max(𝑞𝑎, 0) 𝜃𝑎 + min(𝑞𝑎, 0) 𝜃𝑛
)

−
∑

𝑏

(

max(𝑞𝑏, 0) 𝜃𝑛 + min(𝑞𝑏, 0) 𝜃𝑏
)

= 0, ∀𝑛 ∈ 𝑁
(A.6)

where again 𝑞𝑎 with 𝑎 = (𝑖, 𝑛) ∈ 𝐸 denotes the flow of incoming edges
and 𝑞𝑏 with 𝑏 = (𝑛, 𝑗) ∈ 𝐸 the flow of outgoing edges of a Node 𝑛 ∈ 𝑁 .

A.3. Consumer model

Here a basic model to estimate the heat transferred to the consumer
is introduced. Following from the steady state assumption we model the
consumer substation and heating system jointly as depicted in Fig. 1.

Both bypass and heating system have a control valve
𝛼𝑖𝑗 ∈ [0, 1] ,∀𝑖𝑗 ∈ 𝐸hs ∪ 𝐸bp to regulate the flow. The pressure drop
over both edges is assumed to be in the form

𝑝𝑖 − 𝑝𝑗 = 𝜁𝑖𝑗
𝑞𝑖𝑗
𝛼𝑖𝑗

, ∀𝑖𝑗 ∈ 𝐸hs ∪ 𝐸bp (A.7)

with 𝜁𝑖𝑗 a constant determined from nominal network operating condi-
tions [30].

Conservation of energy in the heating system leads to

𝜌𝑐p𝑞𝑖𝑗 (𝜃𝑖 − 𝜃𝑖𝑗 ) = 𝑄𝑖𝑗 , ∀𝑖𝑗 ∈ 𝐸hs, (A.8)

with 𝑄𝑖𝑗 the heat transferred to the house through the heating system.
The latter is modelled with the characteristic equation for radiators [31,
32]

𝑄𝑖𝑗 = 𝛷𝑖𝑗
(

LMTD
(

𝜃𝑖 − 𝜃house, 𝜃𝑖𝑗 − 𝜃house
))𝑛𝑖𝑗 , (A.9)

in contrast to Blommaert et al. [17], using the LMTD approximation
by Chen [33] to improve conditioning:

LMTD
(

𝛥𝜃A, 𝛥𝜃B
)

≈
(

𝛥𝜃A𝛥𝜃B

(

𝛥𝜃A + 𝛥𝜃B
2

))
1
3
. (A.10)

Here, 𝜃house is the temperature difference between the indoor and the
environment at the house. Values of the coefficients 𝛷𝑖𝑗 and 𝑛𝑖𝑗 are tab-
ulated for individual radiators, according to the EN 442-2 norm [34].
The bypass edges on the other hand are assumed to be free of heat
losses, i.e.

𝜃𝑖𝑗 = 𝜃𝑖 ∀𝑖𝑗 ∈ 𝐸bp (A.11)

A.4. Producer model

In the producer edges, a fixed input flow 𝛾 is imposed as boundary
condition for this system of equations. In addition, a given temperature
𝛩 is imposed for the heat source. This leads to

𝑞𝑖𝑗 = 𝛾𝑖𝑗 , 𝜃𝑖𝑗 = 𝛩𝑖𝑗 ∀𝑖𝑗 ∈ 𝐸prod,f . (A.12)

To uniquely define the pressures throughout the network, a reference
pressure is imposed in one of the producer return nodes.
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Fig. C.14. Evolution of every pipe diameter 𝑑𝑖𝑗 ,∀𝑖𝑗 ∈ 𝐸pipe in the heat network
with the optimization iterations. The increasing penalization 𝜉 ∈ {0, 2, 4} is plotted
in the upper abscissa. Pipe diameters converge towards discrete values for increasing
penalization values 𝜉.

ppendix B. A partially-reduced space reformulation to facilitate
onvergence

Introducing a high penalization 𝜉 in initial optimization stages,
auses an ill-conditioning of the heat transport problem. The steep in-
rease in the hydraulic resistance of pipes through the penalization (see
ig. 4) leads to diminishing flow rates throughout the network during
he initialization. To avoid this ill-conditioning hindering convergence
f the optimization problem, a reformulation of the initial optimiza-
ion problem (Eq. (12)) as a partially-reduced space formulation is
roposed.

In contrast to the state-of-the-art in district heating topology opti-
ization, our approach is based on a consistent set of model equations

nd boundary conditions in a reduced-space approach. However, to
lleviate the ill-posedness of the optimization problem caused by the
enalization of intermediate diameters, we propose a reformulation
ere in a partially-reduced space so that the model equations will only
e satisfied at convergence of the KKT conditions for optimality.

First, we substitute the momentum equations (Eq. (A.7)) of the
onsumer edges in the box constraints 0 ≤ 𝝋 ≤ 1 ∈ R|𝐸con|, which yields

for 𝜁𝑖𝑗𝑞𝑖𝑗 ≥ 0:

0 ≤ 𝛼𝑖𝑗 =
𝜁𝑖𝑗𝑞𝑖𝑗
𝑝𝑖 − 𝑝𝑗

≤ 1 ∀𝑖𝑗 ∈ 𝐸hs, (B.1)

⇔ 𝜁𝑖𝑗𝑞𝑖𝑗 −
(

𝑝𝑖 − 𝑝𝑗
)

∶= 𝒉m (𝒙) ≤ 0, (B.2)

To again close the system of model equations a boundary condition for
the consumer arcs is defined as

𝑞𝑖𝑗 − 𝛼̃𝑖𝑗𝑞max,𝑖𝑗 = 0, ∀𝑖𝑗 ∈ 𝐸hs ∪ 𝐸bp, (B.3)

and the producer inflow is replaced by a pressure driven boundary
condition:

𝑝𝑖 − 𝑝𝑗 = 𝛾̃𝑖 ∀𝑖 ∈ 𝑁prod,f ,∀𝑗 ∈ 𝑁prod,r . (B.4)

This leads to a new system of model equations 𝒄̃
(

𝒅̄, 𝝋̃,𝒙
)

= 0 with
the new design variable vector 𝝋̃ = [𝜸̃, 𝜶̃]⊺ ∈ R|𝐸op|. This significantly
simplifies the model equations, eliminating the ill-conditioning. By sub-
stituting the consumer momentum equation into the bound constraints
for the valve settings, these constraints 𝒉m (𝒙) now have to be treated
as state constraints and are therefore combined with the vector of
generic state constraints 𝒉(𝒅̄, 𝝋̃,𝒙) in 𝒉̃(𝒅̄, 𝝋̃,𝒙) =

[

𝒉(𝒅̄, 𝝋̃,𝒙),𝒉 𝒙
]⊺,
m ( )
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𝒅

A
e

R

constituting the adapted optimization problem:

min
̄ ,𝝋̃,𝒙


(

𝒅̄, 𝝋̃,𝒙
)

𝑠.𝑡. 𝒄̃(𝒅̄, 𝝋̃,𝒙) = 0,

𝒉̃(𝒅̄, 𝝋̃,𝒙) ≤ 0,

𝐷0 ≤ 𝒅̄ ≤ 𝐷𝑁 ,

0 ≤ 𝝋̃ ≤ 1.

(B.5)

ppendix C. Full plot of the design evolution of every pipe diam-
ter

See Fig. C.14.
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