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Abstract—Energy system optimisation (ESOM) and generation
expansion planning (GEP) models are often used to study
energy transition pathways. These typically entail an increased
penetration of variable renewable energy sources (VRES), which
can lead to increased operating reserve requirements due to
their associated forecast uncertainty. Representing this effect
has previously been tackled using either stochastic programming
techniques or deterministic GEPs which use heuristics to size
reserves while ignoring their activation cost. In this paper, we
propose a novel GEP formulation which determines operating
reserve requirements using a second order cone (SOC) constraint.
This formulation approximates the solution of a stochastic GEP
by accounting for reserve activation costs without resorting to
scenario based methods. A case study on the Belgian system indi-
cates possible cost savings of 70 MAC (0.9%) and less bias towards
installing peaking technologies to satisfy reserve requirements
compared to a deterministic GEP. The sensitivity of the results
to the assumption of normality of forecast errors and temporal
detail is also investigated. Two final case studies on the value
of emergency measures and improving forecast uncertainties
illustrate the benefits of accounting for reserve activation costs
and appropriate reserve sizing.

Index Terms—Energy System Optimisation Models, Genera-
tion Expansion Planning Models, Operating Reserves, Uncer-
tainty

I. INTRODUCTION

Energy system optimisation models (ESOMs) suggest pos-
sible pathways for the energy transition by determining min-
imum cost investments to satisfy energy demands, typically
subject to a carbon emissions target [1]. Meeting these carbon
emission targets often requires an increased penetration of
variable renewable energy sources (VRES) in the power sector.
At these high penetrations, forecast uncertainties may require
increased operating reserves. Due to their large technological
scope however, increases in forecast uncertainty are often
neglected, or simple rules for sizing operating reserves are
used. Generation expansion planning (GEP) models are similar
to ESOMs but focus solely on the power sector, hence more
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operational detail can be included. Poncelet [2] included unit
commitment (UC) style constraints in a GEP and found that
of these the addition of reserve requirements had one of the
greatest impacts on system cost and the capacity mix, a finding
confirmed by Palmintier [3]. This motivates the pursuit of
novel GEP formulations which improve the representation of
short term forecast uncertainty. This paper does so with the
additional objective of integrating these improvements in an
ESOM, hence computational burden and simplicity are also
key motivators.

Stochastic programming allows representing short term un-
certainty explicitly in GEP models. Pineda et al. [4] inves-
tigate the effects of jointly optimising the deterministic day-
ahead and stochastic balancing (or reserve activation) markets
in a two-stage stochastic GEP, illustrating that doing so is
cost effective. While stochastic programming techniques lead
to an optimal trade-off between reliability and total costs,
this trade-off typically incurs a high computational burden,
though this can be mitigated using dedicated optimisation
techniques such as progressive hedging [5]–[7]. The quality
of the solution is also highly dependent on the quality of the
scenario generation and reduction techniques used [8], [9].
Applying these techniques is made all the more difficult in a
GEP model since the impact of the uncertainty on, e.g., wind
power forecasts depends on the installed capacities (which are
decision variables), and hence one needs to characterise each
source of uncertainty separately and use a set of scenarios
for each of them. With multiple sources of uncertainty, the
number of scenarios required to obtain a stable solution may be
prohibitively high. Given this, research in the field has focused
on dedicated optimisation techniques [5], [6], [10].

Other attempts to address forecast uncertainty and variabil-
ity in GEP models have pursued a deterministic framework,
typically by adding operating reserve requirements [2]. These
reserves are sized proportionally to the capacity or availability
of the sources of uncertainty (e.g. VRES generation) and
then summed together [2], [3], [11]–[13]. This approach is
similar to robust interval optimisation [14], and consequently
the computed reserves are overly conservative: by adding the
reserve requirements due to different sources of uncertainty
instead of convoluting the underlying distributions, the like-
lihood of extreme events is overestimated. In addition, the
expected costs associated with activating (i.e. using) these



Reserve
sizing

Reserve
activation

Scenario
based Model Section

Proportional 5 5 P-D Section II-A
Approximate
Convolution 5 5 AC-D Section II-E

Approximate
Convolution 3 5 AC-PR Section II-C

Exact
Convolution 3 5 EC-PR Section II-D

Implicit 3 3 I-S Section II-B

TABLE I: Summary of models GEP models studied in this paper ordered
in terms of improving operating reserve representation and computational
complexity. Note that D stands for Deterministic and PR for Probabilistic
Reserves.

reserves1 is typically not accounted for, leading to a bias
towards technologies with low investment but high operational
costs [15].

Krishnan et al. [16] attempt to avoid overly conservative
reserve requirements in a GEP model by assuming normally
distributed uncertainty in demand and wind generation fore-
casts. The reserves requirements are a multiple of the standard
deviation of the net load forecast uncertainty, calculated us-
ing a convolution which is approximated via a square root
approximation. Adapting this approximation for more sources
of uncertainty is non-trivial and its accuracy is not reported.
Moreover, reserve activation costs are not considered.

There is therefore a gap in the literature for a GEP model
which includes reserve requirements (as in [2], [3], [11], [12])
sized using the net load forecast uncertainty (as in [16]) and
whose activation costs are accounted for (as in [4]). In order
to integrate these improvements into ESOMs, this should be
done without resorting to stochastic programming so as to
limit the increase in computational complexity. This work
attempts to fill that gap by presenting a GEP formulation which
sizes reserves using a second order cone (SOC) relaxation
to convolve uncorrelated normal distributions, thus avoiding
overly conservative reserve requirements. By accounting for
the expected cost of activating said reserves using a method
inspired by Bruninx and Delarue [15], the GEP model provides
near cost-optimal technology mixes and so approximates the
solution of an equivalent stochastic GEP.

The rest of this paper is structured as follows. The novel
and other GEP model formulations are presented in Section II.
These are then compared and contrasted in Section III, with
the benefits of considering reserve activation illustrated using
two case studies in Section III-D. Section IV concludes.

II. GEP MODEL FORMULATIONS

The GEP models outlined in this section were deliberately
kept simple (e.g. by omitting any inter temporal constraints)
to focus on the effect of operating reserve requirements and
the costs involved. First, a typical deterministic GEP with
reserves is described in Section II-A. An equivalent stochastic
model is presented in Section II-B. Modification of this last
model leads to the novel GEP in Section II-C. To isolate
the impact of (1) approximating the convolution of normal

1In this paper the term reserve activation is used to refer to real time
balancing.

distributions using SOC constraints and (2) accounting for
reserve activation costs, two additional models are presented
in Sections II-D and II-E. All models use the representative
periods approach to temporal representation [17] though the
period index is not shown for the sake of brevity. A summary
of the different models is presented in Table I.

A. Deterministic GEP with proportional reserve constraints
P-D

P-D is a linear, deterministic greenfield GEP with reserve
requirements:

min
∑

g∈G
cfixg +

∑

∀t


∑

g∈G
cgeng,t + V OLL · lst


 (1)

s.t. cfixg = FCg · kg g ∈ G (2)

cgeng,t = ACg · qg,t g ∈ G, ∀t (3)
∑

g∈G
qg,t = Dt − lst ∀t (4)

qg,t + r+g,t ≤ AFg · kg g ∈ GD, ∀t (5)

qg,t + r−g,t ≥ 0 g ∈ GD, ∀t (6)

qg,t + χg,t = RPg,t · kg g ∈ GR, ∀t (7)

r+g,t ≤ χg,t g ∈ GR, ∀t (8)

r−g,t ≤ RPg,t · kg g ∈ GR, ∀t (9)
∑

g∈GR,∀t
qg,t· ≥ φ ·

∑

∀t
(Dt − lst) (10)

σt =
∑

g∈GR

σg · kg ·RPg,t + σD ·Dt ∀t (11)

D+
t = RC · σt ∀t (12)

D−t = RC · σt ∀t (13)

D+
t ≥

∑

g∈G
r+g,t ∀t (14)

D−t ≥
∑

g∈G
r−g,t ∀t (15)

The objective function (1) is expressed as the sum of fixed
(cfixg ) and generation costs (cgeng,t ). The fixed cost cfixg of a
technology g its the annualised fixed unit cost FCg times
installed capacity kg . The generation cost of a technology g
at a particular time step cgeng,t is defined as the product of
the average generation cost ACg and the generation of that
technology at that time step, qg,t. The cost of emergency
measure deployment (modelled here as load shedding) is
incorporated by multiplying the value of lost load, V OLL,
with the load shed lst.

Constraint (4) is the power balance, which ensures that
the electricity generated is equal to the electricity consumed
minus load shedding at all time steps. Constraint (5) limits
generation qg,t and scheduled upward reserves r+g,t of dis-
patchable technologies GD ⊂ G to the installed capacity de-
rated by an availability factor AFg . Constraint (6) similarly



limits generation and scheduled downward reserves r−g,t. Re-
newable generators (i.e. VRES) GR ⊂ G respect the equality
Constraint (7), which states that the power generated plus
curtailment is equal to the installed capacity multiplied by
the normalised generation profile RPg,t. Constraints (8) and
(9) constrain reserve provision for VRES and Constraint (10)
dictates that a fraction φ of the net total energy consumed∑
tDt − lst must be produced by VRES.
Constraints (11) - (15) size and allocate operating reserves

in the model. Constraint (11) approximates the standard de-
viation of the uncertain net load σt by summing the standard
deviations of the seperate sources of forecast uncertainty. This
σt is then used to size reserves similarly to [2], [3], [11], [13].
Constraints (12) - (13) set the reserves to cover a multiple
RC of this standard deviation e.g. if RC = 3 then 99.9% of
the uncertainty is covered by the reserves, while (12) - (13)
allocates these reserves.

It is not typical to formulate operating reserve requirements
by constraints (11) - (15), but doing so highlights two key
points while being equivalent to more typical formulations
[2], [3]. The first is that σt is conservatively approximated
in Eq. (11) leading to overly larger reserve requirements.
Assuming uncorrelated normally distributed uncertainties, the
correct expression for σt would given by Eq. (16):

(σt)
2 =

∑

g∈GR

(σg · kg ·RPg,t)2 + (σD ·Dt)
2 ∀t (16)

The second point is that by including reserve constraints, this
model is implicitly modelling an operating reserve market2.
However, no balancing costs are taken into account in the
objective function. The technologies providing reserves may
therefore be sub optimal, and as a consequence so may the
capacity mix. This reserve representation therefore resembles
a robust interval optimisation approach [14].

B. Stochastic GEP I-S

The stochastic GEP below is inspired by Pineda et al. [4].

min
∑

g∈G
cfixg +

∑

∀t

(∑

g∈G
cgeng,t + V OLL · lst

+
∑

g∈G
cres,act + cres,shedt

)
(17)

s.t. (2)− (10)

DS
s,t =

∑

g∈GR

αGR
g,s,t · kg ·RPg,t + αDs,t ·Dt s ∈ S, ∀t (18)

DS
s,t =

∑

g∈G
rSg,s,t + rsSs,t s ∈ S, ∀t (19)

rsSs,t ≥ 0 s ∈ S, ∀t (20)

r+g,t ≥ rSg,s,t g ∈ G, s ∈ S, ∀t (21)

r−g,t ≥ −rSg,s,t g ∈ G, s ∈ S, ∀t (22)

2An abstraction is made of whether these flexibility requirements in
the form of operating reserves are provided by market participants or the
transmission system operator.

cres,actg,t =
∑

s∈S
PSs ·ACg · rSg,s,t g ∈ G, ∀t (23)

cres,shedt =
∑

s∈S
PSs · V OLL · rsSs,t ∀t (24)

Equation (18) defines the deviation from the expected net
load (

∑
g∈G qg,t −Dt − lst) in a particular scenario s as the

sum of the predicted renewable generator power kg · RPg,t
and load Dt multiplied respectively by the factors αGR

g,s,t and
αDs,t, which are obtained by sampling from a forecast error
distribution. Constraint (19) requires that redispatching actions
in that scenario mitigate this deviation using dispatchable
or renewable generators rSg,s,t or by shedding load (rsSs,t).
Redispatching actions are limited by the scheduled reserves
through constraints (21) and (22).

The expected cost of redispatching for a technology g at
timestep t (which is analogous to the cost of activating reserves
for that technology) is defined by Eq. (23) as the redispatch
measure rSg,s,t multiplied by the average cost of generation
of that technology ACg weighted by the probability of that
scenario occurring PSs . The expected cost of load shedding
in the balancing stage3 is similarly defined by Eq. (24) as the
product of load shedding in a scenario s, the value of lost load
V OLL and the probability PSs .

Stochastic GEP formulations typically limit the first stage
variables (i.e. variables not indexed by scenarios) to investment
decisions, in this case just kg [5], [6], [10]. The above
formulation was chosen however since it allows for direct
comparison with the other models, though some discrepancies
remain and are discussed in Section V-A. It can be thought
of as modelling both the day-ahead energy-reserve and real-
time balancing markets when optimising investments [4]. This
improvement on P-D comes at the cost of an increasing
number of variables and constraints due to the inclusion of
scenarios. The number of scenarios |S| required to reach a
stable solution also increases with the sources of uncertainty:
if 5 scenarios are required per source, then for 3 sources
|S| = 125, for 4 sources |S| = 625. If integrated into an
ESOM, the I-S formulation would likely have to be solved
using dedicated optimisation techniques.

C. Probabilistic GEP with approximate convolved reserve
requirements and activation costs AC-PR

The AC-PR formulation below is similar to I-S with two
notable differences. First, instead of sampling from indi-
vidual forecast uncertainty distributions, these distributions
are convolved within the optimisation problem to obtain the
distribution of the net load forecast uncertainty. Inspired by
common practice with chance constraints, this is done using
the SOC constraint (25) to sum the variances of the individual
distributions. The second difference is that sampling before
solving the GEP problem is replaced by a technique inspired
by [15], in which the distribution is uniformly discretised into
intervals. The probability of the real time net load deviation
exceeding the lower bound of these intervals is then used to

3From henceforth this will be referred to as reserve shedding.



determine the probability, hence expected cost, of activating
reserves to address the resulting imbalance (see Fig. 1).

min (17)

s.t. (2)− (10)

(σt)
2 ≥

∑

g∈GR

(σg · kg ·RPg,t)2 + (σD ·Dt)
2 ∀t (25)

σt ≤
∑

g∈GR

σg · kg ·RPg,t + σD ·Dt ∀t (26)

DL+

t =
RC

|L+| · σt l ∈ L+, ∀t (27)

DL−
t =

RC

|L−| · σt l ∈ L−, ∀t (28)

DL+

l,t =
∑

g∈G
rL

+

g,l,t + rsL
+

l,t l ∈ L+, ∀t (29)

DL−
l,t =

∑

g∈G
rL

−
g,l,t l ∈ L−, ∀t (30)

r+g,t =
∑

l∈L+

rL
+

g,l,t g ∈ G, ∀t (31)

r−g,t =
∑

l∈L−

rL
−

g,l,t g ∈ G, ∀t (32)

cres,actg,t =
∑

l∈L+

PL
+ ·ACg · rL

+

r,l,t (33)

−
∑

l∈L−

PL
− ·ACg · rL

−
r,l,t g ∈ G, ∀t (34)

cres,shed =
∑

l∈L+

PL
+ · V OLL · rsL+

l,t ∀t (35)

The second order cone constraint (25) is used to convolve
normally distributed forecast errors4. By specifying a reserve
coverage RC and a set of upward reserve levels L+ with |L+|
elements, the uniform size of the reserve levels DL+

l,t and DL−
l,t

is defined by constraints (27) - (28). Constraints (29) - (30)
specify that reserve requirements must be met by generators
or reserve shedding5. Constraints (31) - (32) define the total
amount of reserves scheduled by a technology while Eq. (34)
- (35) are analogous to (23) - (24).

Equation (25) must be binding to allow for a correct
representation of the net load forecast uncertainty distribution.
If the costs associated with reserve provision, activation and
shedding (cres,provg,t , cres,actg,t and cres,shedg,t respectively) were
positive for all timesteps then this would be ensured. The
negative term in Eq. (34) associated with activating downward
reserves means that a binding SOC constraint cannot be
ensured, and so this is only an approximate convolution. For
this reason Eq. (26) was added to the model to limit this
distortion, while model EC-PR was introduced to compare the

4Assuming normally distributed VRES forecast errors can sometimes lead
to un-physical values. A discussion of this is presented in Section V-B

5Load shedding in the balancing stage of the stochastic model, rsSs,t, is

analogous to reserve shedding for the AC-PR model, rsL
+

s,t . For this reason,
both are referred to as reserve shedding in this paper.
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Fig. 1: Illustration of how reserve levels are related to the forecast uncertainty.
The forecast uncertainty distribution is split up into segments D+

l
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l

called reserve levels, whose probability of activation is calculated by
integrating the distribution up to the midpoint of the reserve level as shown
above for D+

1 . This probability is the likelihood that an imbalance will lead
to those reserves being used.

0 1 2 3 4 5
0

1

2

3

4

5

Objective function
pushes σt this way
for downward reserve
activation

Objective function
pushes σt this way
for upward reserve
activation

σ1, σ2 = 1

σ
t

√
σ2
1 + σ2

2
σ1 + σ2

Fig. 2: Bounds on σt in the AC-PR model. Green area is feasible region
given by the SOC constraint (25). Hatcheted area is the feasible region once
the linear inequality (26) is imposed.

solution if the convolution was exact. A graphical illustration
of this approximation for 2 sources of uncertainty is shown in
Fig. 2.

The advantage of the AC-PR model is that the number of
constraints is no longer a function of the number of sources
of uncertainty as it was with the I-S model. Unlike the I-S
model however, normally distributed and uncorrelated forecast
errors must be assumed in order for PL

+

l and PL
−

l to remain
parameters. The assumption of uncorrelated distributions is
typically correct for forecast errors6 [18]. The same cannot be
said for the assumption of normality [19], [20], an assumption
which is checked in Section III-B. This drawback can be
mitigated by using distributionally robust techniques [21].

6This is not the same as saying that the actual time series are uncorrelated.



D. Deterministic GEP with exact convolution and probabilis-
tic reserves EC-PR

Since the novel AC-PR model can only approximate the
convolution of uncorrelated normal distributions, the EC-PR
model is used to compare the result were this convolution to be
exact. This is done by adding an equality constraint to the AC-
PR model to replace Eq. (25) - (26). The resulting problem is
non-convex but was solved to global optimality using Gurobi
9 [22]. This formulation is impractical as it proved to be
intractable for more than 8 representative days (see Section
III-C) but it is useful as a reference case.

min (17)

s.t. (2)− (10), (25)− (35), (16)

E. Deterministic GEP with approximate convolved reserves
AC-D

The novel model AC-PR has two improvements on the
P-D model - reduced reserve requirements and accounting
for reserve activation costs. To distinguish the effects these
two modifications have on the results, the AC-D model
is introduced in which no activation costs are considered
and reserve shedding is not permitted. In effect this is a
chance constrained GEP with upward and downward re-
liability set by Pr

(∑
g∈G r

+
g,t ≥ N (0, σt)

)
≥ RC and

Pr
(∑

g∈G r
−
g,t ≥ N (0, σt)

)
≥ RC respectively.

min (1)

s.t. (2)− (10), (25)− (35)

III. CASE STUDIES

This section analyses the characteristics of the novel GEP
formulation. In Section III-A the various models are compared
in terms of cost, capacity mix, computation times, and reserve
scheduling and activation. Robustness to different sources of
uncertainty and the level of temporal information is inves-
tigated in Section III-B and Section III-C. Two additional
case studies are presented in Section III-D to illustrate the
advantages of the AC-PR model.

A non-exhaustive list of data inputs and assumptions for the
case studies in this section is presented below.
• Demand data Dt was obtained from the ENTSO-E trans-

parency platform [23] for the Belgian system in 2018.
• Onshore wind and solar photovoltaic (PV) power gener-

ation were similarly obtained through ENTSO-E [23] for
Belgium and normalised by installed nameplate capacity
to obtain renewable generation profiles RPg,t.

• A RES penetration target of φ = 50% was used.
• A VOLL of 10,000 AC /MWh was used.
• 8 representative days and their weights were selected

using the method described in [17] unless otherwise
stated.

• Key technology data is given in Table II.

g FCg ACg AFg

[MAC /GW/year] [AC /MWh] [-]
Base 180 36.0 0.85
Mid 101 53.0 0.85
Peak 69 76.0 0.85
Wind 146 0.0
PV 92.0 0.0

TABLE II: Key technology data. Fixed and average generation costs (FCg

and ACg) were obtained from [11]. Availability factors AFg where assumed
to be 0.85 for dispatchable generators while time dependent VRES generation
profiles RPg,t (not shown) where obtained from the ENTSO-E transparency
platform [23].

• Standard deviation values used for VRES forecast un-
certainty were σWind = 0.033 and σPV = 0.025 such
that three standard deviations corresponded to the variable
renewable forecast error reserve requirements used by
NREL’s Resource Planning Model [13].

• Standard deviation value used for load forecast uncer-
tainty was σD = 0.028, obtained from a statistical
analysis of historical data of the Belgian power system
in 2018.

• In the I-S simulations, 53 = 125 uniformly sampled sce-
narios were used to keep computation times acceptably
low while reaching in-and-out-of-sample stability (see
Fig. 3a).

• An out-of-sample analysis7 is conducted to verify the
total costs obtained from the GEP simulations.

• Scenarios were obtained by sampling uniformly from the
normal distributions described above, with 5 scenarios
per distribution

• |L+| = |L−| = 15 for the AC-PR model since |L+| =
|L−| > 10 led to in-and-out-of-sample stability.

• RC = 3 was used and hence 99.9% of the forecast uncer-
tainty was covered by reserves in the AC-PR simulations.

The Julia code for all case studies can be found at:
https://gitlab.kuleuven.be/u0128861/operating-

reserves-in-GEPs.

A. Impact of improved reserve sizing and including reserve
activation costs on the GEP solution

In this section the 5 models are compared in terms of
cost, capacity mix, reserve scheduling and activation and
computation times. Fig. 3a shows the trend in total costs for
the different models. Comparing P-D and AC-D reveals that
the reduced reserve requirements lead to a decrease in total
costs of approximately 30 MAC . These are primarily due to
decreased investment costs resulting from the ability to shed
reserves (see Table III). The decrease in in sample costs
observed when comparing AC-D with AC-PR, EC-PR and I-S
models is similarly due to a decrease in capital expenditure,
this time due to the ability of the latter models to deploy
reserve shedding when this is economical. The AC-PR, EC-PR
and I-S models are within 0.05% of the out of sample results,

7For the out-of-sample analysis the capacities resulting from the simulations
were fixed and then the models repeatedly simulated for various scenarios until
the 95% confidence interval was less than 0.01% of the total costs or more
than 10,000 scenarios were run [18].
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Fig. 3: Comparison of costs, installed capacity and (expected) reserve provi-
sion for models P-D, AC-D, AC-PR, EC-PR and I-S.

with remaining discrepancies explained by the difference in
expected energy not served (EENS) values due to the different
representations of uncertainty.

As expected, AC-PR underestimates total costs since it
overestimates the cost savings possible from activating down-
wards reserves by 16 MAC . This underestimation is dwarfed
however by the 72 MAC saved compared to P-D. In addition, the
capacity mix of AC-PR is similar to that of the other models
which consider balancing costs more accurately, EC-PR and I-
S (see Fig. 3b). Since they account for activation costs, these
models install less peak capacity (which is cheap to install
but expensive to run) compared to the deterministic P-D and
AC-D models. Fig. 3c illustrates this behaviour quite clearly.
Peak capacity is scheduled to provide upward reserves almost
exclusively for the deterministic models whereas it is also
scheduled for downward reserves for the probabilistic reserve
models. Note that the total scheduled upward reserves is also
greatly reduced.

In this study, we did not consider any technical requirements
for the reserve providers (e.g., ramping limits, maximum
activation times) in order to isolate the effect of reserve sizing
and reserve activation in GEP models and to avoid any bias
towards specific assumptions on the flexibility of different
technologies or the requirements for reserve providers [2].
Adding such constraints may lead to, e.g., more peak capacity
installed in the AC-PR, EC-PR and I-S simulations.

Model Total costs
[MAC ]

Fixed costs
[MAC ]

Max load +
reserve

shedding [GW]

EENS
[GWh]

P-D 8126 (8098) 6108 0 0 (0)
AC-D 8091 (8078) 6088 0 0.2 (0)
AC-PR 8054 (8038) 6066 0.53 1.5 (1.1)
EC-PR 8056 (8049) 6072 0.53 1.7 (1.1)

I-S 8049 (8051) 6080 0.75 0.8 (0.9)
TABLE III: Summary of key results from simulations for 8 representative
days, with bracketed numbers indicating in sample results. The maximum
expected load shedding value gives an indication of the reduction in capacity
achieved by economic shedding of reserves. Much of the cost savings can be
explained by reductions in fixed investment costs, which are achieved either
through improved reserve sizing, the ability to shed reserves, or both.

B. Robustness of AC-PR model to the assumption of normally
distributed uncertainty

To test the assumption of normality’s robustness against
uncertainty, an out of sample analysis was conducted using
five different distributions (as inspired by [24]), with the results
reported in Table IV. Since the model used to run the out of
sample analysis is running “at the limit” of its capabilities, it is
unsurprising that the total costs are very sensitive to the EENS.
The Student t distribution leads to such high costs because it
has “fatter” tails than a normal distribution and hence a greater
chance of load needing to be shed in real time. This effect may
motivate the inclusion of a planning reserve margin (PRM)
to deal with low probability, high impact events. However, a
PRM is subject to the same issue as the operating reserves
in P-D, namely that the cost of operating technologies is not
considered [25].
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(a) Simulation times as a function of the number of representative days. AC-PR is a bit
less than an order of magnitude faster than I-S.
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(b) Total costs as a function of the number of representative days. The difference in total
costs between models which consider activation costs and those which don’t remains in
the interval of 0.5-1%.
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(c) Maximum load shed as a function of the number of representative days. The difference
of this value between models which consider activation costs and those which do not
is correlated with the difference in total costs (R2 = 0.64 when comparing P-D and
AC-PR).

Fig. 4: Effect of increasing the number of representative days on computation
time, the total costs and maximum load shedding. EC-PR is not shown since
it was not possible to run this simulation for more than 16 representative days.

Distribution Total Cost [M AC ] EENS [GWh]
Reference 8054 (8043) 1.1

Normal with σg × 1.2 8085 (8039) 4.6
Normal with σg × 0.75 8052 (8038) 1.4

Left skewed Normal with
α = −5 8015 (8007) 0.8

Right skewed Normal with
α = 5

8095 (8069) 2.6

Student t distribution with
µ = 1

8704 (8038) 66.6

TABLE IV: Robustness of AC-PR model solution to uncertainty. Bracketed
values are total costs when EENS costs are subtracted. The heavy tailed
Student t distribution leads to the greatest amount of EENS and hence the
greatest increase in costs.

C. Sensitivity of results to the number of representative days

Fig. 4a shows the computation times of the various models.
The AC-PR model can be solved just under an order of
magnitude faster than the I-S model, though still slower than
P-D and AC-D. The difference between the AC-PR and I-S
models increases if the time taken to build the model is taken
into account, though this was not included since it is specific
to the particular implementation of the optimisation problem.

Most of the results discussed so far have been limited to
simulations with only 8 representative days (192 hours). While
this is quite high compared to the 10 - 50 timeslices typically
used in ESOMs [26], there could be important interactions
between the level of temporal detail and short term uncertainty.
For example, the advantage of being able to economically
schedule reserve shedding could be negated if more timesteps
are considered. Fig. 4b and Fig. 4c show that this is not the
case. While there are differences in the results between the
number of representative days (see [17] for a discussion on
this), for a particular representative day the trends are the same
- total costs decrease with improved reserve sizing, and they
decrease even more when reserve activation costs are consid-
ered. This last trend appears to correlate with the maximum
expected load shedding, suggesting that this decrease in costs
is due to reduced capacity costs as hypothesised in Section
III-A.

D. Benefits of considering reserve activation costs

To illustrate the benefits of considering reserve activation
costs, Fig. 5 shows two additional case studies. In Fig. 5a the
sensitivity of the models to the cost of deploying emergency
measures is investigated. The AC-PR model is clearly able
to exploit the benefits of reduced emergency measure costs
better than the P-D and AC-D models. In particular, this benefit
increasingly outweighs the convolution approximation error as
the cost of emergency measures decreases. In Fig. 5b the AC-
PR and AC-D models illustrate how the value of reducing
VRES forecast errors might be overestimated by the simpler
P-D and AC-D models.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel GEP problem formulation
with an improved representation of operating reserves. In
Section III-A it was shown that the investment decisions of
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(b) Value of reducing VRES forecast errors in reducing total costs. The P-D model
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additional unit of Peak capacity. Note that σD was kept constant for these simulations.

Fig. 5: Case studies illustrating the benefits of the AC-PR model’s ability to
approximate I-S but faster. Dashed lines are in sample results while solid lines
are results obtained when in sample capacities were fed to the EC-PR model
which was then solved. This was done to approximate the out of sample
solution without resorting to the more computationally intensive I-S model.

the model were similar to that of an equivalent stochastic
model while requiring roughly an order of magnitude less
computation time. The results were robust to the temporal
detail though sensitive to greater likelihood of extreme scarcity
events where load must be shed. Additional case studies on the
value of emergency measures and reducing forecasting errors
in Section III-D highlighted the benefits of considering reserve
activation costs in a GEP formulation.

Given these observations, the AC-PR formulation appears
suited to situations where operating reserves could drive
simulation results (e.g. high VRES systems) and a stochastic
model is not possible or required. If this is not the case
then the improvements obtained could be obscured by other
factors. If applied to a problem then the solution should also
be verified by rerunning an operational model with fixed
operating reserves to ensure that the downward reserve sizing

approximation is tolerable.
Future work could investigate the effect of UC type tech-

nical constraints and improved treatment of high impact low
probability events on the results. Implementation of the novel
GEP formulation into an ESOM could also be considered.

REFERENCES

[1] D. Connolly, H. Lund, B. V. Mathiesen, and M. Leahy, “A review of
computer tools for analysing the integration of renewable energy into
various energy systems,” Applied Energy, vol. 87, no. 4, pp. 1059–1082,
2010. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2009.09.
026

[2] K. Poncelet, E. Delarue, and W. D’haeseleer, “Unit commitment con-
straints in long-term planning models: Relevance, pitfalls and the role of
assumptions on flexibility,” Applied Energy, vol. 258, no. August 2019,
p. 113843, 2020.

[3] B. Palmintier, “Flexibility in generation planning: Identifying key op-
erating constraints,” in 2014 Power Systems Computation Conference,
Aug 2014, pp. 1–7.

[4] S. Pineda, J. M. Morales, and T. K. Boomsma, “Impact of forecast errors
on expansion planning of power systems with a renewables target,”
European Journal of Operational Research, vol. 248, no. 3, pp. 1113–
1122, 2016.

[5] F. D. Munoz, B. F. Hobbs, and J. P. Watson, “New bounding and
decomposition approaches for MILP investment problems: Multi-area
transmission and generation planning under policy constraints,” Euro-
pean Journal of Operational Research, vol. 248, no. 3, pp. 888–898,
2016.

[6] J. Barnett, J. P. Watson, and D. L. Woodruff, “BBPH: Using progressive
hedging within branch and bound to solve multi-stage stochastic mixed
integer programs,” Operations Research Letters, vol. 45, no. 1, pp. 34–
39, 2017.

[7] J. Bukenberger and B. Palmintier, “Stochastic Generation Capacity
Expansion Planning with Approximate Dynamic Programming,” Pro-
ceedings of the IEEE Power Engineering Society Transmission and
Distribution Conference, vol. 2018-April, pp. 1–5, 2018.

[8] K. Bruninx and E. Delarue, “Scenario reduction techniques and solution
stability for stochastic unit commitment problems,” in 2016 IEEE
International Energy Conference (ENERGYCON), April 2016, pp. 1–
7.

[9] Y. Dvorkin, Y. Wang, H. Pandzic, and D. Kirschen, “Comparison of
scenario reduction techniques for the stochastic unit commitment,” in
2014 IEEE PES General Meeting — Conference Exposition, July 2014,
pp. 1–5.

[10] A. Papavasiliou and S. S. Oren, “Multiarea stochastic unit commitment
for high wind penetration in a transmission constrained network,”
Operations Research, vol. 61, no. 3, pp. 578–592, 2013.

[11] A. Van Stiphout, K. De Vos, and G. Deconinck, “The Impact of Oper-
ating Reserves on Investment Planning of Renewable Power Systems,”
IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 378–388, 2017.

[12] C. De Jonghe, E. Delarue, R. Belmans, and W. D’haeseleer,
“Determining optimal electricity technology mix with high level of wind
power penetration,” Applied Energy, vol. 88, no. 6, pp. 2231–2238, 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2010.12.046

[13] T. Mai, C. Barrows, A. Lopez, E. Hale, M. Dyson, and K. Eurek,
“Implications of Model Structure and Detail for Utility Planning :
Scenario Case Studies Using the Resource Planning Model,” National
Renewable Energy Laboratory, Denver, Tech. Rep. April, 2015.

[14] S. Boyd, Convex optimization theory. Cambridge University Press,
2009, vol. 25, no. 3.

[15] K. Bruninx and E. Delarue, “Endogenous Probabilistic Reserve Sizing
and Allocation in Unit Commitment Models: Cost-Effective, Reliable,
and Fast,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp.
2593–2603, 2017.

[16] V. Krishnan, T. Das, E. Ibanez, C. A. Lopez, and J. D. McCalley,
“Modeling operational effects of wind generation within national long-
term infrastructure planning software,” IEEE Transactions on Power
Systems, vol. 28, no. 2, pp. 1308–1317, 2013.
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V. APPENDIX

A. Stochastic GEP I-S and redispatching

A key difference between the I-S and the other models is
that the former is able to re-dispatch downwards (upwards) to
deal with a negative (positive) imbalance in real time. This
is illustrated in Fig. 6. It is not clear to the authors what
this additional degree of freedom has on the behaviour of I-S
model, though it does appear to make use of it and schedule
an order of magnitude more reserves than the other models.

0+ve imbalance -ve imbalanceDS
s,t

1
2

3

Fig. 6: Illustration of possible redispatch to satisfy an imbalance for the
I-S model. The negative imbalance realisation DS

s,t can be satisfied by
redispatching generators upwards, as shown by arrow 1. Another option would
be to redispatch some generators up (arrow 2) but also some down (arrow 3),
which when summed up give arrow 1.

B. Approximating VRES generation profile prediction errors
using a normal distribution

One problem with approximating VRES generation profile
RPg,t prediction errors by normal distributions is that while
0 ≤ RPg,t ≤ 1, a normally distributed variable can theoreti-
cally take on any real value. This problem is partly resolved
by artificially cutting off the tails of the normal distribution.
There is still the risk that the need for downward reserves is
overstated, since a normal could suggest RPg,t values greater
than one (see Fig. 7). This was dealt with by separating
positive and negative sides of the normal distribution and
scaling the standard deviation of the latter such that renewable
generation profiles greater 1 are not possible. It should be
noted that for 8 representative days this scaling did not change
anything since RC · σg ·RPg,t < 1 ∀g ∈ GR, ∀t.
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Fig. 7: Illustration of the error when approximating renewable generation
profile forecast errors using normal distributions. Scaling resolves problem of
having un-physical renewable generation profile values.
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