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Abstract

This report outlines a framework for analysing the resource ade-

quacy of an electric power system resulting from a TIMES model run as

well as the results of the analysis. This analysis is done using unidirec-

tional soft-linking of the TIMES BE energy system planning model and

the GEPPR power systems operation model. This means the installed

capacities from TIMES are used as inputs to the GEPPR model and

wherever possible assumptions on other input data are aligned. Several

increasingly detailed and complex adequacy assessments are proposed

in order to identify the drivers of (in)adequacy within the TIMES BE

model. The analysis results in unacceptably low levels of adequacy for

all planning years, which for the final planning year (2050) could even

eclipse the total energy system costs. These results are mostly likely due

to modeling assumptions and should not be interpreted as implying that

the power system proposed by TIMES will be unacceptably inadequate.

Nonetheless, this exercise highlights the increased sensitivity of resource

adequacy to the flexibility of the power system and Variable Renewable

Energy Sources (VRES) generation profiles as the penetration of VRES

in the power system increases.
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1 Introduction and motivation

2 Literature review of research on adequacy aware

Capacity Expansion Planning models

This section briefly discusses methods proposed in the literature to make

power system Capacity Expansion Planning (CEP) models adequacy aware

along with comments on how easily they may be adapted to a whole Energy

System Optimisation Model (ESOM) such as TIMES. These can be broadly

categorised into 3 types: capacity constraints, model decomposition and the

inclusion of extreme events based on an initial model run.

2.1 Capacity constraints

This method involves the inclusion of an explicit capacity constraint (often

called a reserve margin constraint) within the CEP model. This method is

analysed in Mertens et al. (1) where it is shown how such constraints bias

capacity mixes towards peaking technologies such as Open Cycle Gas Turbine

(OCGT) since they are the least cost option to satisfy such constraints.

Mertens et al. (2) also discusses the issues associated with crediting the

adequacy contribution of VRES (i.e. estimating their capacity credit) in such

constraints while the issues associated with crediting storage technologies

are addressed in Mertens et al. (3). Stephen and Kirschen (4) presents a

novel method of endogeneously treating thermal generator outages and a

stochastic peak demand to avoid the issue of incorrectly defining the reserve

margin within a capacity constraint.

While it is fairly straightforward to include a capacity constraint in TIMES,

the references in the previous paragraph highlight that such a constraint is

likely to be biased towards certain technologies and so is undesirable.

2.2 Model decomposition

An adequacy aware power system CEP would ideally include as many time

series of (VRES) generator availabilities and load. In this way, the CEP
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model could make an economically efficient trade-off between installing new

capacity and shedding load or alternatively explicit constraints on an adequacy

indicator, such as the Expected Energy Not Served (EENS), could be made.

This comes at a significant computational cost however, an issue which can be

addressed using model decomposition techniques. For example, progressive

hedging is used in Munoz and Mills (5), Benders decomposition and Stochastic

Dual Dynamic Programming in da Costa et al. (6) and a Julia package for

Dantzig-Wolfe decomposition is presented in Downward et al. (7).

Implementing decomposition algorithms for CEP models is a complex under-

taking and typically requires access to the source code of a computational

model. For this reason such algorithms cannot be easily applied to models

such as TIMES.

2.3 Inclusion of extreme events based on an initial Capacity

Expansion Planning model run

Hilbers et al. were the first to propose using the results of a CEP model run to

select extreme periods for a second, adequacy aware model run. Similar ideas

or variations thereof have also been proposed by Sun et al. (9), Teichgraeber

et al. (10), Hilbers et al. (11), Teichgraeber et al. (12), Mertens et al. (2).

Nuances aside, all of the methods proposed by the aforementioned authors

rely on at least one initial model run to correctly identify extreme events and all

outperform other time series aggregation or a priori extreme event inclusion

methods. The initial model run is critical to identify extreme periods for

systems with significant penetration of VRES since such periods are typically

associated with a high residual load instead of simply high load.

This method is ideally suited for making an ESOM such as TIMES adequacy

aware since it does not require additional constraints or changing the solution

method. All that is required is to use an initial model run to inform the

representative periods included in the final model run.

3 Literature review of soft-linking models

The adequacy assessments described in this report assess the adequacy of

an electric power system produced from a TIMES model run. Academic lit-
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erature refers to such an interaction as ‘unidirectional soft-linking’ of two

models and similar examples of such an exercise exist. Pavičević et al. (13)

links the JRC-EU-TIMES planning model with the Dispa-SET unit commit-

ment model to investigate the effect of assuming different levels of flexibility

and sector coupling in Dispa-SET on the results. They find that sector cou-

pling could decrease total costs by 25%. Deane et al. (14) links an Irish

TIMES planning model to the PLEXOS power systems operational model

and finds that TIMES potentially undervalues flexible resources, underesti-

mates wind curtailment and overestimates the use of baseload power plants.

Younis, Ahmed and Benders, René and Raḿırez, Jezabel and de Wolf, Merlijn

and Faaij, André (15) uses a similar soft-linking approach for a mid-century

deep decarbonisation scenario of Columbia, finding that the planning model

underestimates 2-5% of the annual energy cost.

It is also worth highlighting approaches to energy transition assessments which

go beyong the typical techno-economic analysis. For example, Trutnevyte

et al. (16) uses a ‘landscape of models’ to analyse a qualitative storyline.

These models include a broader environmental and socio-behavioural analysis.

Gardumi et al. (17) adopts a similar approach, though a hierarchy of models

and (bi-directional) soft-links are proposed which is more reminiscent of what

was done as part of the EPOC project. Such assessments may be considered

holistic in that they go beyond the techno-economic dimension to consider

issues related to e.g. vulnerability of consumers or unintended environmental

and health impacts of proposed transition pathways (17).

These studies highlight the utility of such soft-linking, which can reveal the

blind spots of planning models such as TIMES due to coarse temporal, spatial

and technological detail as well as address non-techno-economic issues.

4 Methodology

4.1 Increasingly detailed and complex assessments

Several increasingly detailed and complex adequacy assessments are proposed

in order to identify the drivers of (in)adequacy within the TIMES BE model.

These assessments are carried out using The Generic Electricity Planning

with Probabilistic operating Reserves Model (GEPPR) (18), a versatile power
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system optimisation model written in the Julia programming language. These

model runs or assessments are summarised in Table 1 and explained in further

detail in the following sections. Note that ”TIMES results” refers to the power

system proposed by a TIMES model run.

Figure 1: Increasingly detailed and complex model runs.

4.1.1 10. Validation

In a first instance, an economic dispatch model is run which should yield the

same generator dispatch as TIMES. The level of detail is therefore the same

as in TIMES: 10 representative days with a 2 hour sampling time. This is also

a check that the input data for both TIMES and GEPPR agree with each

other.

4.1.2 20. Sampling time set to one hour

The sampling time of GEPPR is changed from 2 to 1 hours. The original

availabilities of VRES are available in a 1 hour sampling time and hence these

are used. For the load time series the value was repeated twice.

4.1.3 30. Representative periods are ordered throughout the year

The 10 representative days used in TIMES are ordered throughout the year

so as to obtain a 365 day long time series. This ordering process is described

in Gonzato et al. (19) and the figure explaining it is reproduced below. Addi-

tionally this process is described in the RepresentativePeriodsFinder.jl pack-

age. The re-ordering was done so as to best approximate the full year VRES

availability time series.
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Figure 2: Illustration of the process of ordering representative periods, repro-

duced from Gonzato et al. (19). Here, the post processing step was also used

such that linear combinations of representative periods could be used.

No new information is used in this step. Any differences in adequacy indica-

tors are purely due to the different chronology representation and hence the

differing storage dispatch.

4.1.4 40. Rolling horizon

Instead of a one-shot optimisation, a rolling horizon based approach is used, as

is typical of industrial adequacy assessments (see e.g. Elia (20)). A lookahead

horizon of one week was used which is the same horizon as in Elia (20). This
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assesses the effect of forecast errors, though it should be noted that a one

week lookahead horizon is quite large and not in line with the capabilities of

meteorological forecasting tools.

4.1.5 45. Full year Variable Renewable Energy Sources availaiblity fac-

tors

The full year availability factor time series is used instead of that coming

from the (ordered) 10 representative periods. This tests the sensitivity of

the TIMES results to the representative periods chosen. It should be noted

however that industrial adequacy assessments in the EU use 200 weather

years instead of a single one (20, 21).

4.1.6 50. Forced outage draws

Until this point it is assumed that thermal generators were 100% available1.

From this point onwards a thermal generator availability time series is created

by assuming a forced outage rate, repair rate and typical unit size. This

tests the sensitivity of the TIMES results to using annual availability factors

(sometimes known as annual load factors) to represent the limited availability

of thermal generators instead of actual outage draws (which are non-trivial

to represent in an investment model (4)).

4.1.7 60. Clustered unit commitment formulation

To test the sensitivity of the TIMES results to the approximations taken

regarding generator flexibility, at this stage a clustered unit commitment for-

mulation is used.

4.1.8 70. Increasing the number of weather years

Due to data availability and time constraints, the adequacy assessments past

this point were not conducted and therefore do not appear in the results.

1The exception is during the validation stage, where maximum annual load factors were

used in the same way as in TIMES
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Industrial adequacy assessments run economic dispatch models for many

Monte Carlo years which are correlated combinations of VRES availability,

load and forced outage time series. Unsurprisingly the sensitivity of power

system adequacy to weather increases with increasing penetrations of VRES

as highlighted by the increasing interest in “Dunkelflaute” events (periods

with little to no solar or wind) (22). This assessment therefore tests the

sensitivity of the TIMES results to only including a single weather year when

selecting 10 representative days.

4.1.9 80. Electric vehicle transport demand draws

Electric mobility is increasingly being touted as an important solution for de-

carbonising the transport sector (23). Indeed, in the TIMES results 57.8 GWof
car battery capacity is present by 2050. This puts additional strain on the

power system which may not be captured by the 10 representative days in-

cluded in TIMES, hence this assessment tests the sensitivity of the results to

including transport demand draws.

To do this, transport demand data from TML is converted into demand for

electrical energy. This electrical energy must come from a single battery

in the model. The transport demand normalised by the number of electric

vehicles is assumed to be 1 minus the availability of the battery (i.e. if a car

is driving it cannot be charged). The transport demand is sampled in a similar

way to thermal generator outage draws.

4.1.10 90. Detailed Heating, Ventilation and Air Conditioning demand

In a similar spirit to the previous section, this assessment uses synthesied elec-

tricity demand required for Heating, Ventilation and Air Conditioning (HVAC)

so as to test the sensitivity of the TIMES results to only using 10 representa-

tive days of HVAC demand. This demand is synthesised using building mod-

els developed by the building task within EPOC which takes outside weather

conditions and typical user preferences as inputs. These time series can be

generated for several typical buildings and users and then scaled up to the

total building stock of Belgium.
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4.1.11 100. Import capacity

Given the limited scope of the time series data used here, as a first approx-

imation the import / export flows were fixed for the 10 representative days.

As a highly interconnected system, Belgium’s ability to import electricity from

abroad can have significant impacts on the adequacy of its’ power system as

evidenced by the influence of assumed nuclear availability (20). As a crude

test of the sensitivity of the assumption of import / export flows on the re-

sults, this assessment caps the import capacity of the TIMES results by a

percentage of the maximum capacity.

4.2 Input data and assumptions

4.2.1 Input data: a summary of the TIMES results

Tables (3), (4), (5) and (6) summarise the installed capacities of the power

system and the demand and supply for each period or planning year. The

difference between supply and demand is due to losses in the transmission

network.

Figure 3: Summary of installed capacities in GWcoming from the TIMES
results.
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Figure 4: Summary of installed storage capacities in GWcoming from the
TIMES results.
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Figure 5: Summary of demand for electricity in GWyr−1 coming from the
TIMES results, broken down by process set.
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Figure 6: Summary of the supply of electricity in GWh yr−1 coming from the
TIMES results, broken down by technology.

4.2.2 Assumptions

Due to the different scopes of TIMES and GEPPR (energy and electric power

system respectively) and formulations, a number of assumptions had to be

made for validation to be possible. These are listed below.

Losses The TIMES model captured losses between different voltage net-

works whereas GEPPR was not written so as to accomodate voltage net-

works. To overcome this, the losses from TIMES were fixed for all adequacy

assessments and added to the load time series input to GEPPR. This ap-

proximation should lead to the same dispatch for the validation stage.

Co-Heat and Power (CHP) units Since these are optimised by TIMES to

satisfy heating and not electricity demand the dispatch of these units was

presumed fixed and subtracted from the load time series input to GEPPR.
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Imports and exports The TIMES model used import-export curves to rep-

resent trade opportunities. While this would have been possible to also im-

plement in GEPPR, it would have increased the implementation complexity.

Instead, the import-export flows were fixed and subtracted and added respec-

tively to GEPPR’s load time series.

Annual availability factors The TIMES model uses annual availability fac-

tors to account for limited availability of thermal generation units. This is non-

trivial to implement in a rolling horizon approach and hence it was dropped

for assessments which used this solution approach.

Nuclear For the validation stage, the dispatch of legacy nuclear power

plants (not Small Modular Reactors) was constrained to be between bounds

provided by the TIMES modelling team, as was done in the TIMES model

run. For assessments which used the ordered year of representative days this

was not done.

Electrolysers The electricity consumption of electrolysers was added to

GEPPR’s load time series. This is done because GEPPR’s scope is limited to

the power system, and so it is unable to model the process of electrolysis to

produce hydrogen which is then burned in gas power plants.

Hydrogen Since some power plants in 2050 use hydrogen which is endoge-

neously produced within the TIMES optimisation, the fuel cost of this was

set to the import cost of hydrogen.

4.3 Clustered unit commitment and economic dispatch model

The below is reproduced largely unedited from Gonzato et al. (24).

Typically in adequacy assessments an economic dispatch model is solved for

many Monte Carlo years y ∈ Y to obtain a load net of power injection2 profile
φyt where t ∈ T is the set of timesteps (here hours) of operation. A Monte
Carlo year is a combination of a weather profile and forced outage draw which

2The load minus the generation and storage charge and discharge.
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determines the availability AFryt of resources r ∈ R and load profile Dyt . An
economic dispatch problem for year y can be written as:

min
∑

g∈G,t∈T

Cg · qgyt +
∑
t∈T

l syt · V OLL

s.t.∑
g∈G

qgyt +
∑
h∈H

(dhyt − chyt) = Dyt + l syt t ∈ T

ehyt+1 = ehyt + 1/
√
ηh · chyt −

√
ηh · dhyt h ∈ H, t ∈ T

0 ≤ qgyt ≤ AFgyt ·Kg g ∈ G, t ∈ T
0 ≤ chyt ≤ AFhyt ·Kh h ∈ H, t ∈ T
0 ≤ dhyt ≤ AFhyt ·Kh h ∈ H, t ∈ T
0 ≤ ehyt ≤ AFhyt ·Kh/E2Ph h ∈ H, t ∈ T

(1)

where the variables l s, q, c , d and e are load shedding, generation, storage

charge, discharge and energy content. V OLL, Cg, K, E2P are the Value Of

Lost Load, cost of generation, capacity (in MW) and energy to power ratio
(in hours).

The clustered unit commitment formulation builds on the above model. De-

scribing it in detail is beyond the scope of this report, however a description

can be found at (25).

5 Results

5.1 10. Validation

A first step investigates the results of a GEPPR model run which should yield

the same dispatch as the TIMES model run. This was not achieved within the

allotted time for unknown reasons. Figure 7 plots the aggregated dispatch

of nuclear, gas, solar PV and onshore wind power plants for all timeslices in

2018. The dispatch in GEPPR of solar PV and onshore wind almost exactly

matches that of TIMES, as does that of gas though to a lesser degree. The

nuclear dispatch displays more of an error. Removing a constraint which

bounds the nuclear dispatch so as to give a more realistic profile reduces the
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dispatch of VRES technologies to zero but at the cost of an increased error

in the nuclear dispatch. This is evident from Figure 8.

(a) Aggregated nuclear dispatch. (b) Aggregated gas power plant dispatch.

(c) Aggregated solar PV dispatch. (d) Aggregated onshore wind dispatch.

Figure 7: Validation of dispatch from GEPPR and TIMES model runs for

2018.

17



(a) Nuclear (b) Onshore wind

Figure 8: Evolution of the annual absolute difference in dispatch between

GEPPR and TIMES model as a function of the planning year. The decrease

could be explained by retiring of old power plants.

In the TIMES results, there is no load shedding and therefore EENS at all.

However, Figure 9 shows that the GEPPR model run does have approximately

40 GWh yr−1 of EENS. This is of minor importance as this error goes to
zero for 2020 and it is the later results which are of greater interest.

Figure 9: Evolution of the EENS resulting from the GEPPR validation model

run as a function of the planning year. Contrary to the TIMES results, the

EENS is non-zero for the year 2018.
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5.2 Increasingly detailed adequacy assessments

This section investigates the adequacy of the TIMES results for progressively

more complex input data and models. Figure 20b teases the results of this

analysis which Section 5.3 covers in greater detail. It shows the EENS nor-

malised by the total load, which reaches approximately 0.02% of the total

load by 2040. By comparison, the Australian reliability standard requires that

EENS does not exceed 0.0006% of the total load (26, Section 6). While

most of the increases in complexity result in greater levels of EENS, model

runs 30 to 45 do not, most likely because they relax constraints related to

storage dispatch. This highlights the importance of storage technologies (and

perhaps flexiblity providers more generally) in the highly decarbonised power

system described by the TIMES results.

Figure 10: Comparison of the EENS (approximately normalised by the total

load, assumed to be 80 TWh, and expressed as a percentage) resulting from

increasingly complex GEPPR model runs for the year 2040.

19



5.2.1 20. Sampling time set to one hour

Figure 11 shows the evolution of EENS as a function of the planning year. Re-

ducing the sampling time from two to one hour3 is enough to incur 100 GWh yr−1of
EENS in 2040, highlighting the sensitivity of the adequacy of high VRES sys-

tems to the output of these resources. Later results further strengthen this

observation.

Figure 12 shows the dispatch for day two of year 2040 (load shedding occurs

only occurs in day two and one). The timing of the load shedding event is

unusual. Typically load shedding in countries such as Belgium would occur

during the evening peak in demand at around 18. However, for this high

VRES system, the hours with the highest demand occur during the day to

better match the output of solar PV. Load shedding therefore occurs just

before and after this peak, at 9 and 16, respectively.

Figure 11: EENS as a function of the planning year for model run 20 (the

sampling time for VRES reduced from 2 to 1 hours, see Table 1 and Section

4.1).

3This only affects the VRES timeseries. The load is repeated for two consecutive hours

as can be seen in Figure 12
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Figure 12: Dispatch of GEPPR model run 20 (the sampling time for VRES

reduced from two to one hour, see Table 1 and Section 4.1) for day two and

year 2040. Generation is aggregated by sector, COM = Commercial, RSD =

Residential, IND = Industry, TSF = unknown.

5.2.2 30. Representative periods are ordered throughout the year

Figure 13 shows the evolution of EENS as a function of the planning year. In

comparison with Figure 11, the EENS of years 2018 and 2040 decreases. This

is likely due to the correlation between the load and VRES generation changing

between these two model runs due to the ordering of the representative days.

In this case, this change in correlation favours less EENS.
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Figure 13: EENS as a function of the planning year for model run 30 (repre-

sentative days ordered throughout the year, see Table 1 and Section 4.1).

Figure 14a shows the load shedding duration curve for the year 2040. Though

there are many hours of the year in which load shedding occurs (approximately

400), most of the load shedding is less than 0.6 GW. Figure 14b plots the
mean daily load shedding, illustrating how load shedding events are clustered

around particular days.

(a) Duration curve (b) Timeseries

Figure 14: Additional load shedding or energy not served figures for model

run 30 (representative days ordered throughout the year, see Table 1 and

Section 4.1) and year 2040.
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5.2.3 40. Rolling horizon

Figure 15 shows the evolution of EENS as a function of the planning year.

Little difference can be seen with respect to Figure 13.

Figure 15: EENS as a function of the planning year for model run 40 (rolling

horizon instead of single shot optimisation, see Table 1 and Section 4.1).

5.2.4 45. Full year of Variable Renewable Energy Sources availability

factors

Figure 16 shows the evolution of EENS as a function of the planning year.

The EENS is 2 orders of magnitude greater than that observed in Figure 15.

This highlights the sensitivity of the EENS to VRES output, particularly since

it increases dramatically in later planning years where there is higher VRES

capacity (see Table 3). This is in line with results found in the literature4.

Such high volumes of EENS are unlikely to be acceptable in Belgium (see

Section 5.3 for a discussion of the economic costs of this.).

4(20) note the correlation of temperature and VRES output on scarcity events. (27)

illustrate how the inter-annual variability of total costs increases with increasing VRES. (28)

and (29) both investigate the increased sensitivity of expansion planning results on VRES

generation profiles.
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Figure 16: EENS as a function of the planning year for model run 45 (full year

of VRES availability factors instead of those from the representative days, see

Table 1 and Section 4.1).

Figure 17a highlights the severity of the load shedding events for the year

2040, with load shedding occurring for more than one-third of the year at

values greater than a GW. Figure 17b illustrates how these events are evenly
distributed throughout the year.

(a) Duration curve (b) Timeseries

Figure 17: Additional load shedding or energy not served figures for model

run 45 (full year of VRES availability factors instead of those from the repre-

sentative days, see Table 1 and Section 4.1) and year 2040.
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5.2.5 50. Forced outage draws

Figure 18 shows the evolution of EENS as a function of the planning year. The

inclusion of forced outages of conventional generators increases the EENS,

particularly for the year 2030 in which conventional generation is still domi-

nant. This increase is less dramatic than that which occurred when introduc-

ing variability in VRES generation however (see Figure 16 and Figure 10).

Figure 18: EENS as a function of the planning year for model run 50 (forced

outage draws for conventional generators, see Table 1 and Section 4.1). Error

bars indicate 95% confidence intervals.

5.2.6 60. Clustered unit commitment

Figure 19 shows the evolution of EENS as a function of the planning year.

The inclusion of unit commitment constraints further increases the EENS,

though again less than the introduction of increased variability in VRES gen-

eration (moving from model run 40 to 45, see Figure 10). This highlights

the possibility of load shedding occurring due to inflexible generation and not

just due to insufficient resource capacity in a particular hour. Similar results
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can be found in the literature5.

Figure 19: EENS as a function of the planning year for model run 60 (forced

outages of conventional generators, see Table 1 and Section 4.1).

5.3 Overview of results

Figure 20 plots the EENS for increasingly complex GEPPR model for the

years 2020 and 2050. The EENS is non-zero starting from model run 50

for the year 2020 and model run 45 for 2050 (see Table 1 and Section 4.1),

highlighting the sensitivity of high VRES systems to the output of these gen-

erators compared to low VRES systems which are more sensitive to generator

outages. Such levels of load shedding are unlikely to be acceptable in Bel-

gium. In addition, if model runs 70 to 100 were carried it is almost certain

that the EENS would further increase since these model runs would increase

the variability of the load net of generation.

However, these results should be interpreted with extreme caution and not

be interpreted as the EENS which would result if the power system proposed

5For example, (30) find that the ignoring unit commitment constraints in a planning

model can overestimate the capacity credit of VRES and energy storage. In an operational

model, this would translate to unit commitment constraints increasing shed load.
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by TIMES was implemented. For now, it’s worth considering that the power

system proposed by TIMES in 2020 is essentially the Belgian power system at

the time of writing which has not experienced any blackouts at all, let alone

600 GWhworth. This suggests that this large volume of EENS are due to
the assumptions made and discussed in Section 4.1. More specifically, fixing

the import and export flows may be causing this. The annual load factors

used by TIMES means that the availability factors of thermal generators is

‘optimised’ to account for these flows, which may further exacerbate. The

caveats associated with these results are further discussed in Section 6.

(a) 2020 (b) 2050

Figure 20: Comparison of the EENS resulting from increasingly complex

GEPPR model runs. Note the difference in y-axis scales for the two fig-

ures.

Figure 21 compares load shedding costs for model run 50 (see Table 1 and

Section 4.1) with other costs coming from TIMES for the years 2030 and

2050. These figures serve to highlight just how great the EENS is for this

model run.
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(a) 2030 (b) 2050

Figure 21: Comparison of load shedding costs with other (undiscounted)

costs from the TIMES model run for model run 50 (forced outage draws for

conventional generators, see Table 1 and Section 4.1). Load shedding costs

are of the same order of magnitude for both 2030 and 2050.

6 Concluding remarks

The adequacy assessment of the TIMES results revealed unacceptable levels

of inadequacy. That this was found also for the year 2020 (though to a lesser

degree than for 2050) suggests that this is largely due to the assumptions

taken in order to carry out this exercise. The most important of these in-

clude adding import and export flows to the load; fixing CHP dispatch; fixing

electrolyser dispatch; and adding power system losses to the load.

Avoiding the need for such assumptions in the future would require the fol-

lowing:

� A European-wide power system model This would allow for a better rep-

resentation of import and export flows. Achieving this requires, among

other elements: projections for the future European capacity mix; sev-

eral (ideally 30 or more) years worth of VRES generation and load

time-series data;
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� An energy system model instead of power system model This would

allow for a representation of hydrogen and other energy carrier flows

which is more closely aligned with TIMES. Indeed this modelling ca-

pability features in ENTSO-E’s roadmap for the European Resource

Adequacy Framework (21).

Even with these improvements, it is still possible that an overestimation of

adequacy issues would occur if the electrical load, such as that coming from

household and industrial use, was assumed to be inflexible or inelastic. Such

an assumption appears unlikely for high VRES systems.

This exercise was nonetheless fruitful in illustrating the concept of increasing

the model complexity can reveal insights into what is causing adequacy issues.

In particular, the increasing sensitivity of adequacy to VRES generation and

the need for increased flexibility were highlighted in line with other work (see

Sections (5.2.4) and (5.2.6)). Including scarcity days in TIMES using meth-

ods similar to the ones described in Section 2.3 as well as ramping constraints

could be computationally efficient additions to resolving this issue.
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