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Chapter 1

Problem Statement and necessary
background

1.1 Research context
Achieving a sustainable energy transition is one of the main challenges in today’s world.
Climate change has encouraged an increase in the usage of renewable energy. In 2021,
Belgium’s energy mix contained 22.7% renewable energy [1]. More recently, the geopolitical
context with the war in Ukraine has encouraged a reduction in the usage of gas as a
combustible.

In this context, it is important to be able to plan ahead the consequences of long-term
decisions, such as building new power generation plants. Understanding the reliability of
the power grid that would result from long term decisions is a difficult task, but one of
vital importance. Current research uses models of planned future grid on which different
scenarios are simulated. These simulations give an indication about the studied power
grid configuration and its reliability.

This work contributes to the EPOC project [2]. The EPOC project combines the expertise
of 14 Belgian academic partners to improve the current state-of-the art energy models,
providing a consistent calculation for the long-term energy future in Belgium.

The remainder of this chapter serves as a formal problem statement. First, the nature of
forecasts and scenarios, as well as how they are created is detailed. Afterwards, the metrics
used to evaluate the scenarios are motivated and explained. Finally, the motivations
behind the use of machine learning in this task are introduced.

1.2 Forecast and scenario generation
Forecasts consist of a day-ahead prediction for the power grid, while a scenario is the
next-day realisation. The forecasts consist of wind and solar power generation prediction
as well as load demand prediction in each node. In other terms, the forecast estimates
how much power will be generated by wind and solar production at each node as well as
the power usage at each node. A node can be seen as an actor of the power grid, like a
generation plant or an apartment building. The nodes are connected together by lines

1



which bring power from the generation node to the consumption node. The scenarios are
given as a deviation from the forecast.

Forecasts are obtained by utilizing historical data. A year is taken as a reference, 2015 in
this case, where information about wind production, solar production and load is available.
To obtain forecasts for a future period, the values from that year are rescaled to reflect
the estimated change in magnitude between both dates for each energy generator. This is
performed by the Belderbos Belgian model [3]. The model has the particularity that, after
the rescaling, a high percentage of the power generation capacities come from renewable
energies. Another particularity is that nuclear generators are replaced by gas-fired power
plants.

Possible realisations of next-day scenarios are generated based on the forecasts using
normalizing flows introduced in [4]. Normalizing flows are generative models allowing to
express probability distributions in a simple manner. The scenario generation tool used in
this research has been introduced in [5].Scenarios represent the situations that effectively
could happen the next day. Performing evaluation on a wide array of generated scenarios
is crucial to get a precise evaluation of the overall reliability of the grid.

1.3 Evaluation metrics and grid modeling

1.3.1 Objective function
To evaluate the scenarios, the primary metric is the following cost function :

min
u,e,w,pg ,f,θ

 ∑
n∈N

un,0 +
∑

c∈C\0

un,c

|C|−1

 + 0.1
|C|

∗
∑
s∈S

(e+
s,0 + e−

s,0) +
∑

c∈C\0

(e+
s,c + e−

s,c

|C|−1

 (1.1)

Preserving the balance of energy production and demand is crucial. Sometimes, preserving
this balance requires to take unwanted actions that cause issues on the grid, but is the only
way to prevent more catastrophic failures. The equation considers two types of unwanted
actions :

• un, represents load shedding at node n. When total load is greater than available
production, load shedding involves dropping energy supply to a certain number
of consumers, until the system’s production and load are balanced again. In this
situation, some consumers would get cut from the grid and not get their desired
supply. This is why this solution is only used in last resort.

• es, represents the storage redispatch of the storage device s. This is another solution
to deal with imbalances in the system that doesn’t involve as many issues as load
shedding. It consists in utilizing stored energy to satisfy part of the load. As this
is less problematic, it is scaled down in equation 1.1 compared to load shedding.
However, as storage capabilities are limited, it is sometimes not possible to restore
the balance using this method. This is when load shedding becomes unavoidable.

Equation 1.1 accounts for the situations in the preventive case and in the post-contingencies
c ∈ C \ 0. The situations can be described as the working state of a power grid. The
preventive one is where all lines are operating as usual. Post-contingencies evaluate N − 1
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situations of the power grid, in which one line is down and thus cannot be used to transport
power. The evaluation of contingencies is scaled down by the number of contingencies -1,
to prevent them from having a disproportionate impact on the overall cost. The preventive
situation is usually referred to as contingency 0.

Additionally to the load shedding for all nodes n and the storage redispatch for all storages
s, the equation is also minimized with regards to p̂g - the hydro/thermal power generation
edispatch, w - the renewable power generation curtailment and f - the branch flow. They
do not appear in the equation 1.1 as they are not classified as unwanted actions, but they
indirectly influence its value. Overall, the result of the equation is expressed in energy
volumes as a weighted sum of all the load power demand that needs to be shed, and the
power redispatched from the storages.

1.3.2 Grid modelling and constraints
The power produced needs to move in the grid to be able to satisfy load demand at a
certain destination node n that requires it. The unability of the grid to move enough
power can be a reason for a high value of equation 1.1.

Consider the power flow fl for each line l. For all nodes n and considering the contingency
0 :

∑
l∈Ln

fl,0 =
∑

g∈Gn

[p̂g + ((p+
g,0 + p−

g,0)] + (rn − wn,0) − (dn − un,0) −
∑

s∈Sn

[ês − (e+
s,0 − e−

s,0)]

(1.2)

Where p̂g the hydro/thermal power generation dispatch of generator g, ês the energy
storage dispatch of storage s, rn the renewable power generation, dn the load demand,
p

+/−
g,0 ≥ 0 the hydro/thermal power generation redispatch, e

+/−
s,0 ≥ 0 the energy storage

redispatch, wn,0 ≥ 0 the renewable power generation curtailment, un,0 ≥ 0 the load demand
shedding and fl,0 the branch power flow.

This equation can be adapted for all nodes n and contingencies c ∈ C \ 0 :

(1.3)
∑

l ∈Ln

fl,c

=
∑

g∈Gn

[p̂g + ((p+
g,c + p−

g,c)] + (rn − wn,c) − (dn − un,0 − un,c) −
∑

s∈Sn

[ês − (e+
s,0 − e−

s,0) − (e+
s,c − e+

s,c)]

Where all the constraints of equation 1.2 still hold for all contingencies. Load shedding for
a post-contingency c is represented as un,0 + un,c as a contingency can only add more load
shedding compared to the preventive case.

Equation 1.3 is subject to constraints :

fl,c = (al,c

Xl

) ∗
∑

n∈N
λl,n ∗ θn,c (1.4)

− f̄l,c < fl,c < f̄l,c (1.5)
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Where λl,n the branch incidence, al,c the branch availability (0 if l = c and 1 otherwise),
Xl the reactance and f̄l the grid capacity are all parameters / constraints. θn,c is a variable
representing the voltage angle.

The meaning of equations 1.3, 1.4 and 1.5 is straightforward. Equation 1.3 indicates that
the power flow is the sum of all the power that passes through the line. Equation 1.4
constraints this value by forcing it to 0 if the branch is unavailable, and otherwise limiting
its value to what is physically achievable given the reactance of the line, the voltage angles
and the branch incidences. Equation 1.5 further constraints the value by limiting the value
to the absolute line capacity.

Further constraints are applied on the hydro/thermal generators. For all generators g ∈ G
and all contingencies c ∈ C :

vg ∗ Pg ≤ p̂g + (p+
g,c + p−

g,c) ≤ vg ∗ P̄g (1.6)

Where vg generator on/off status indicator, p̂g generator day-ahead dispatch, Pg/P̄g

generator min./max. power output bounds and rn realized RES power generation. The
equation constraints the generators to operate within their generation bounds.

Furthermore, the curtailment cannot exceed the generation. For all renewable (RES)
generators at nodes n ∈ N and contingencies c ∈ C :

0 ≤ wn,c ≤ Rn (1.7)

The load shedding cannot be negative or exceed the total system load. More formally, for
all nodes n ∈ N and all contingencies c ∈ C \ 0 :

0 ≤ un,0 + un,c ≤ dn (1.8)
0 ≤ un,c (1.9)

Concerning the storage devices, for all storages s ∈ S and all contingencies c ∈ C \ ′,

When in charging mode, ês ≥ 0:

0 ≤ e+
s,0 + e+

s,c ≤ ês (1.10)
0 ≤ e+

s,c (1.11)
0 ≤ e−

s,0 + e−
s,c ≤ 0 (1.12)

0 ≤ e−
s,c ≤ 0 (1.13)

When in discharging mode - else:

0 ≤ e+
s,0 + e+

s,c ≤ 0 (1.14)
0 ≤ e+

s,c ≤ 0 (1.15)
0 ≤ e−

s,0 + e−
s,c ≤ |ês| (1.16)

0 ≤ e−
s,c (1.17)
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1.3.3 Security margin
The margin is a second evaluation metric that is calculated in the event when there is
no or very temporary load shedding / storage redispatch. More contretely, this value is
calculated to give more insights into scenarios where the value of 1.1 is below 0.0005. It
represents the additional load that can be added to the system while keeping the value of
equation 1.1 below the threshold. As such, it can be seen as a distance to risk metric.

When considering margin, for all nodes n ∈ N and contingencies c ∈ C :

∑
l∈Ln

fl,c =
∑

g∈Gn

[p̂g + ((p+
g,c + p−

g,c)] + (rn − wn,0) − (dn + mn) −
∑

s∈Sn

ês (1.18)

Notice the similarity between equation 1.18 and equations 1.2 and 1.3. In equations 1.2
and 1.3, load shedding is deducted from the system load, as it represents load demand
that is no longer satisfied to preserve. The margin is the opposite, as it adds fictive load
to the system while maintaining balance.

Where the goal is to maximize the margin:

max
m,w,pg ,f,θ

∑
n∈N

mn (1.19)

Subject to equations 1.4 to 1.7

1.4 Goals of machine learning
Machine learning has been applied to the topic of energy systems reliability in a variety
of ways. In fact, 366 articles has been posted on this subject between January 2000 and
October 2019 [6]. For this work, three main objectives where identified.

First, machine learning can be a way to speed up the evaluation process. To compute
the result of equations 1.1 and 1.19, scenarios need to go through a simulator, which is
a time consuming task as the min operation of 1.1 and the max of equation 1.19 are
of high complexity. Furthermore, equation 1.1 requires the evaluation of each of the 46
possible post contingencies. A machine learning model’s prediction can be computed in a
lower complexity. As such, the first goal of machine learning is to study how well it can
predict the values, and if it is possible to obtain a model with a satisfying performance on
predictions.

Secondly, the use of machine learning can help understand the data and how the input
variables of the scenarios relate to the results of equations 1.1 and 1.19. Some models allow
the computation of a feature importance metric which allows to understand how a model
achieves its predictions. By studying the error of such models, it is also possible to see if
any unexpected result is detected. Given the results obtained, researchers will be able to
study them and possibly find shortcomings in the simulation or evaluation process.

Finally, the goal of the evaluations is to get a sense of the reliability of the grid. The
interest is not necessarily in the exact values of equations 1.1 and 1.19, but rather in a
classification of secure and insecure situations. Sometimes, a human expert could trivially
perform this classification task, for example because issues are immediately apparent.
The simulations however calculate the precise value of both equations, which might not
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provide valuable additional information. Indeed, in a very reliable situation, equation 1.19
would be high and 1.1 low, while in a very unreliable situation the result of equation 1.1.
Instead, it might be desirable to run the full simulation only on situations that are difficult
to classify for an expert, and use estimations of the values otherwise. To perform this,
a machine learning model can be fill the role of an expert to classify the situation into
categories and based on the confidence of the classification, the decision to either run the
full simulation or to perform an estimation can be taken.
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Chapter 2

Data analysis

In this chapter, a study of the available data is performed. As a base for this chapter
and the following ones, 1000 scenarios for the same day are considered, which contain in
total 24 000 hourly snapshots. This chapter aims to understand the distribution of input
variables (wind, solar and load) and values of equations 1.1 and 1.19 across the dataset
of scenarios. This will later help to make sense of the results that are obtained by the
machine learning models that are presented in chapters 4 and 5.

Unless mentioned otherwise, all power values are expressed in per-unit with a base of 100
MVA (1 per-unit = 100MW) .

2.1 Unit commitment & economic dispatch (UC&ED)
The day-ahead forecast gives expected load, solar and wind values for the next day. Similar
forecasts are used in the real world to take decisions about the power grid, such as which
thermal generator to activate. This process is also simulated and creates a UC&ED. Given
the forecast, a UC&ED consists of hourly decisions about storages and generators.

For hydro/thermal generators, the activation of each generator is decided on a day-ahead
basis. Generators need some time to start up as they require heat. This is why it is
necessary to take decisions in advance. Each generator has a minimum (Pmin) and a
maximum (Pmax) possible power generation. A system-wide Pmin and Pmax can be
computed. From here, the generator production for the next day can only vary between
the Pmin and Pmax at all times.

A storage device can either be seen as a generator or a as load by the system. When power
is stored, it is seen as load as the power needs to be provided by the grid. When power
is used from the storage, it acts like a generator by providing more power to the system.
The maximum power that can be stored or used from the storage varies from hour to hour
based on the energy already in the device stored and the planned use for the rest of the
day. As such, the max load and generation that the storage can provide are decided for
each hour based on the day-ahead.

This whole process is also referred to as unit commitment : what unit of production and
what use of storage will be available at what hour for the next day.

During the course of this project, two different UC&ED were analysed. Technically, one
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of the UC&ED is an improvement upon the other. However, it remains interesting to
study both security analyses, as comparing results between both will allow to identify
important variables in each case, and study what kind of performance can be achieve
in both situations. It is also an opportunity to analyse the improvements provided by
the update. For the remainder of this work, the upgraded UC&ED will be referred to as
"updated" or "new", while the other will be referred to as "original" or "old".

Figures 2.1 and 2.2 show the results of the UC&ED. Figures 2.1 represents the hy-
dro/thermal generators unit commitment in both the old and updated UC&ED. The Pmin
and Pmax of the combined hydro/thermal generators is also shown. The margin is the
difference between Pmax and Pmin (not to be confused with eqn. 1.19). Units refers to
the number of committed (active) hydro/thermal generators for each hour.

The old generation summary presents very little variation between hours except for the
the last hour where all values are set to 0. The only other hour which presents a difference
is 9:00, which has 22 active generators instead of 21, which is a marginal difference. For
the new UC&ED, the variation is more consequent with more units are active during the
daylight hours.

(a) Old UC&ED in per-unit (100 MW)

(b) New UC&ED in per-unit (100 MW)

Figure 2.1. Comparison of generation summary for the old and new UC&ED

Figure 2.2 shows the difference in storage for both security analyses. They have a similar
evolution throughout the day, with a peak of charge during the daylight hours. This might
be to account for the higher production that was seen in figure 2.1. However, they also
present some differences. First, the updated UC&ED has more opportunities to use the
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storage as a generator. Only one hour during the day cannot use storage as generator
against eleven for the old one. Furthermore, the old UC&ED seems to charge the storage
at the beginning and middle of the day and empty it at the end of the day. This gives
no opportunity for using the stored energy in the beginning of the day, as the storage is
empty. Overall, the old UC&ED makes the use of the storage more restrictive.

(a) Old UC&ED in per-unit (100 MW)

(b) New UC&ED in per-unit (100 MW)

Figure 2.2. Comparison of storage summary for the old and new UC&ED

2.2 Forecasts
Figure 2.3 shows the forecast for the hourly total load demand as well as solar and wind
production. The values presented are the sum across all nodes for load, solar and wind
values respectively. It is interesting to note that the highest requirement for additional
power happens in the morning, as this is when the biggest discrepancy happens between
load demand an renewable generation. Between 11:00 and 14:00, the solar generation
is enough to provide energy to the whole grid load demand forecast, assuming that the
transport of the power can be insured.
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Figure 2.3. Hourly Forecasts for the 11 November for wind, sun and load values

2.3 Evaluating Scenarios
To better understand the scenarios, the figure 2.4 shows the distribution of objective values
(equation 1.1) obtained for each scenario and classified by hour. The objective value is the
main indicator to evaluate the problems that occur in a scenario is at a given hour. The
first UC&ED suffers from a severe spike in objective value at hour 23:00, and has very
small values otherwise. This might be due to the fact that no hydro/thermal generator is
committed at this time, as was shown in figure 2.1a. This severe spike presents issues as
the prediction at 23:00 is significantly different from all other predictions, which might
make it hard to make relevant analyses for the other hours.

Comparatively, the updated version has consistently higher objective values at multiple
hours of the day. However, as can be seen by the 90th percentile point, most of the
scenarios before 15:00 do not present any significant issues, and high objective values are
outliers. In the evening, the number of scenarios with high objective values increases
significantly.

The same analysis is made for the margin on figure 2.5. The margin distributions are similar
between both security analyses, with peaks during daylight hours. The new UC&ED never
has a margin value above 0 after 15:00. This is because the value of equation 1.1 is never
lower than the threshold of 0.0005 after this time.

2.4 Training Datasets
The first objective is to train machine learning models with high performance to predict
the values of 1.1 and 1.19. The basic data used during the training of the raw data from
the scenarios, that is : the load demand and solar and wind generation values. The
solar and load values are given for each node, as they are present everywhere in the grid
while the wind values only appear in some nodes. This leads to 46 inputs for the load
values, 46 for the solar values, and 5 for the wind production, which produces a total of 97
features.

Additional datasets were constructed by adding more features to the datasets.

The datasets were built using the following inputs :
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(a) Old UC&ED

(b) New UC&ED

Figure 2.4. Comparison of distribution of objective values (eqn. 1.1) across scenarios per
hour

(a) Old UC&ED

(b) New UC&ED

Figure 2.5. Comparison of distribution of margin values (eqn. 1.19) across scenarios per
hour
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• Basic : Only contains the 46 load, 46 solar and 5 wind inputs.

• Time: The basic set with an additional field that gives the time of the day

• Features : The basic set enhanced with five hand-crafted features : the sum of loads,
the sum of solar power generation, the sum of wind power generation, the difference
between load and renewable production and the percentage of load that can be
satisfied using renewable energy.

• Time / Features : A combination of the Time and the Features variables

• Excluding 23 : Same as the basic set, but where the values at time 23:00 were
removed. This only exists for datasets applied on the old UC&ED and was created
to remove the significant outlier detected at figure 2.4a.

Furthermore, two types of data were considered for the load, sun and win values :

• Absolute : the absolute values are the true physical values of the load and the
renewable generation on the grid. They are expressed in per-unit (100MW)

• Deviations: the deviations to the forecast. It is the difference between the day-ahead
expectation and the observed values for the load and renewable production. They
are also expressed in per-unit.

The reasoning behind this is that, while it is expected that the absolute data contains
more information, as it depicts the real situation of the grid, deviation data might be
more suitable in some circumstances. Indeed, as the unit commitment is based on the
forecast, if the deviation is close to 0 it is likely that there will be less issues due to the
unit commitment process.

2.5 Classification
The task was also reformulated as a binary classification task. The classes are zero and
one. Zero corresponds to a "secure" situation where equation 1.1 is ≤ 0.0005, while one is
when it is equal or above to that value.

The training set for the old UC&ED had a distribution of 58.5 percent ones and 41.5
percent zeros. In the test set, the distribution is exactly the same, at 58.5 percent and
41.5 percent respectively. For the new UC&ED, the distribution in the training set is 60.6
percent ones and 39.4 percent zeros, while the test set has a distribution of 59.7 percent
ones and 40.3 percent zeros.

For the old UC&ED, the results of the dataset without the last hour were not included
in the report to avoid redundancy. Indeed, these models performed very similarly to the
ones trained one the basic dataset in all situations.
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Chapter 3

Machine learning algorithms

Using the datasets described in section 2.5, four machine learning algorithms were chosen
to learn a good prediction.

All regression models are evaluated using the R2 score and mean squared error metrics
while the classification models are evaluated using accuracy. The datasets are split into a
training and a test set with a respective size of 80/20.

3.1 Trees
The first type of models used are tree ensembles. Individual decision trees are trained,
and the final outputs of the ensemble model is obtained by combining the different trees.
For the regression problems, the final prediction is the average prediction across all trees
for, and the majority class for classification problems.

A major advantage of decision trees is their interpretability, which allows to analyze what
variables were used by the model to reach the prediction. Unfortunately, ensemble models
are slightly less interpretable as their prediction can depend on hundreds of different
decision trees. However, it is still possible to calculate feature importance, which is the
main interest in this case.

The two models that were tested are Random forests and Extra trees.

3.1.1 Random Forest
Random forest [7] is an ensemble method that builds a serie of trees. It uses bootstrap
sampling to associate each tree to a unique learning sample. Each tree is then built by
using random feature subset selection. Instead of choosing the best split among all features,
like a classic decision tree, the split is chosen from a subset of k features. The value of
k needs to be set as a hyperparameter. A smaller value of k leads to a bigger variance
decrease at the cost of an increase in bias.

The hyperparameters used in the experiments were as follow : 500 trees were built and k
was set to the number of features. This means that the random forest is equivalent to tree
bagging. The leaves were split as soon as they contained two samples. Squared error was
used as a metric to evaluate the split for the regression problems, and Gini impurity for
the classification problems.
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3.1.2 Extra Trees
Extra Trees [8] is a method similar to random forest as it also select a random subset of
features to perform the split on. However, instead of choosing the split point that decreases
the most the impurity, the split point is chosen randomly for each feature, and the best
split among all features is chosen. This increases the randomness compared to random
forests, which usually leads to a slight increase in bias but a decrease in variance.

The hyperparameters used are the same as the Random Forests.

3.2 Linear models

3.2.1 Linear / Logistic regression
Linear regression is a simple weighted linear model that minimizes the sum of squares
between the observed and the predicted values while logistic regression computes a
linear classification threshold. The output is expressed as a weighted sum of the input
variables.

As the name implies, linear regression is limited to produce linear models. Due to
the limited expressive capabilities of such a model, state of the art performance is not
expected, but it should be interesting to compare how this simple model compares to more
complicated ones, like ensemble of trees and neural networks.

3.2.2 Multilayer Perceptron
The multilayer perceptron is an architecture composed of layers where each layer is
comprised of nodes. Each node in a layer is the result of a weighted sum of nodes in
the previous layer. We talk of fully connected feedforward networks when all nodes in a
layer are connected to all nodes in the next layer. Training a neural network consists of
performing gradient descent to learn good weight values between nodes of consecutive
layers.

Usually, activation functions are used to break the linearity and allow the MLP to express
nonlinear dependencies.

Compared to trees, hyperparameters had a bigger impact on performance. As such, to find
an optimal set of hyperparameters, 5-fold cross validation was performed. The training set
was split into train and validation. The test set is never used to decide the hyperparameters.
The hyperparameters with the best average performance across all validation folds were
chosen. The criterias used were mean squared error for regression problems and cross
entropy loss for classification.

The best performance for the regression problems were obtained with a model trained
during 500 epochs with a learning rate of 0.0001 and 128 as hidden layer size. The number
of hidden layers was fixed at two for all experiments. A Relu activation layer was used after
every layer but the output layer. Intuitively, it would make sense to use a ReLU activation
function of the output layer, as all the predicted values should be positive, however this
lead to most models suffering from the dying Relu problem where the gradient would be
zero for most predictions which leads the model to be unable to learn.
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For the classification tasks, a simpler model offered the best performances. The model
was trained during 100 epochs with a learning rate of 0.001 and 64 as hidden layer size.
As previously, two hidden layers were used for all experiments and a ReLU activation
function in all layers expect the last one. As the output of the model should be a binary
classification, the sigmoid activation function was applied on the output to restrict the
output to values between 0 and 1.

For this architecture, all inputs were normalized to be zero centered with a standard
deviations of one to respect the assumptions behind weight initialization that the data
is zero centered. To perform normalization, the mean and standard deviation of the
training set were calculated, and both the train and test sets were normalized using these
values.
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Chapter 4

Results

4.1 Basic Results
The Tables 4.1 and 4.2 present the first results for the old and new UC&ED respectively.

Regarding table 4.1, the predictions made with only the basic set of variables are un-
satisfying with every model tested. This can partially be explained by the considerable
difference between the values obtained at 23:00, and the values obtained during the rest of
the day. This leads the time of the day to be a critical variable. The models cannot learn
a distribution that explains satisfyingly the true probability distribution without it, as
shown by the low R2 scores. The best R2 score is 0.42, and is associated with a mean
squared error of 0.59. This is obtained by the neural network model which suggests that a
combination of features is needed to make more accurate predictions, which also explains
why the tree models have a low score. The error is relatively high regardless, especially
considering that the variance across the dataset is only around 1.098. Removing the last
hour from the dataset increases R2 score drastically for all models, which confirms the
idea that most of the error comes from that hour.

Table 4.2 shows greater performance with the basic set of variables. The best models
reach a R2 score of 0.90 and a mean squared error of 0.21. This improved performance is
explained by the fact that there is no big outlier when it comes to distribution of objective
value per hour, as shown in figure 2.2b. Furthermore, the high R2 score seems to suggest
that the distribution of objective across hours can mostly be explained by the values of
the forecasts.

The time metric implicitly contains information about the unit commitment at each hour.
As such, it encompasses a wide range of information about the grid situation. When
adding the time to the models of table 4.1, the mean square error decreases significantly
with the old UC&ED. The mean squared error drops to 0.0045 for the best model, a
reduction by a factor of 100 compared to the baseline. The R2 score also increases to over
0.99 for the random forest and Extra Trees. The new UC&ED doesn’t show as impressive
gains, confirming the idea that most information is contained in other variables. However,
when adding the time in 4.2, the performance of the trees now surpasses the MLP. This is
due to there now being a single feature that contains a lot of information, which favours
the performance of trees.
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Overall, for table 4.1, the best model is obtained when using only the basic features and
the time of the day as input, and using ExtraTrees with deviation values. For table 4.2,
the best performance is also obtained by ExtraTrees with time and features, and using
absolute values.

Another observation of both tables is that adding the hand crafted features does not have a
significant impact on performance. They might marginally improve or worsen the obtained
models, but overall the results are too close to one another to draw any conclusions.

Finally, the models trained on the deviation data perform very poorly in some situations
and very well in others compared to the absolute set. More specifically, performance is
very poor when time is not used as an input. It seems like the model can partially infer
the time of the day with the absolute values as input, but not as easily with the deviations.
Indeed, absolute load, solar and wind values can be used to determine the time. As we
saw in figure 2.3, a high amount of wind is more likely in the evening, the load is lower
during the morning, and sun values only appear during the daylight hours with a peak
at noon. Note however that deviations also might give some information. Indeed, the
deviation of the sun will always be zero outside of daylight hours, as both the predictions
and the realization will always be zero.

Figures 4.1, 4.2 and 4.3 display some values for prediction against ground truth for the
old UC&ED, and 4.4, 4.5 and 4.6 for the new one. These figures show that all models
with a R2 score below 0.85 show significant weaknesses in some areas of the plot, and are
therefore not satisfying. The most frequent error that appears in the figure is the model
prediction a positive value when the ground truth is zero. This is especially apparent in
figures like 4.1a, 4.1b, 4.2a, 4.2b and 4.3e

4.2 Feature importance analysis
To study which variables are relevant to the problem, it is interesting to compute feature
importance for the models with a good prediction. The traditional mean impurity decrease
was used to compute them, which checks the ability of a variable to consistently decrease
the impurity of the leaves in the tree. An issue is that mean impurity decrease tends to
overestimate the importance of numerical features, and underestimate the importance
of categorical features. The only categorical feature is the time and as such it might
get underestimated. Also note that feature importance only estimates how important a
variable is for the trained model. It does not give direct indication on the real information
given by the variable.

To limit the length of this section, not all models were analysed for both security analyses.
The models chosen were selected for their relevance. Furthermore, only the top 10 variables
were plotted for each case. For more detailed plots, please see Appendix A.

For the old UC&ED, the basic, basic excluding last hour, time and time/features datasets
are shown. For each, the model performing best among all tree models was chosen. Figure
4.7a shows that without any additional information, the main criteria used was the wind
variables. Solar variables on the opposite are almost never used. Once the last hour is
removed, figure 4.7b shows that some solar values are used. Figures 4.7c and 4.7d show
that the best models overall use the time as the single most important variable. Solar and
load values are almost never used, while wind-related values provide some information.

17



(a) Basic Absolute (b) Basic Deviation (c) No 23 Absolute

(d) No 23 Deviation (e) Time Absolute (f) Time deviation

Figure 4.1. Prediction and ground truth of eqn. 1.1 : Random Forest, old Security Analysis

(a) Basic Absolute (b) Basic Deviation (c) No 23 Absolute

(d) No 23 Deviation (e) Time Absolute (f) Time deviation

Figure 4.2. Prediction and ground truth of eqn. 1.1 : Extra Trees, old Security Analysis

18



(a) Basic Absolute (b) Basic Deviation (c) No 23 Absolute

(d) No 23 Deviation (e) Time Absolute (f) Time deviation

Figure 4.3. Prediction and ground truth of eqn. 1.1 : Multi Layer Perceptron, old Security
Analysis

(a) Basic Absolute (b) Basic Deviation (c) Time Absolute

(d) Time Deviation (e) Features Absolute (f) Features deviation

Figure 4.4. Prediction and ground truth of eqn. 1.1 : Random Forest, new Security
Analysis
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(a) Basic Absolute (b) Basic Deviation (c) Hour Absolute

(d) Time Deviation (e) Features Absolute (f) Features deviation

Figure 4.5. Prediction and ground truth of eqn. 1.1 : Extra Trees, new Security Analysis

(a) Basic Absolute (b) Basic Deviation (c) Time Absolute

(d) Time Deviation (e) Features Absolute (f) Features deviation

Figure 4.6. Prediction and ground truth of eqn. 1.1 : Multi Layer Perceptron, New
Security Analysis
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Figure 4.7d also shows that while the additional features don’t improve the results of the
learned model, they are still used by the model as splitting criteria. As such, "Difference"
is the third most important feature and "Sum Wind" the fourth.

For new UC&ED, the same process is followed, which results in all models being Extra
Trees with absolute data as they always perform best among the trees. Figure 4.8a shows
the feature importance for the basic set. Again, the wind variables are dominating the
load and solar ones. Figure 4.8b shows that by adding the time variable, it becomes the
second most important feature and GOUY Wind. GOUY Wind might be relevant because
it has a high power generation capacity. The other wind variables are used slightly less
when the time is added. Figures 4.8c and 4.8d confirm that the additional features are
used by all models where they are added.

(a) RandomForest Basic Absolute (b) RandomForest No 23 Absolute

(c) ExtraTrees Time Deviation (d) ExtraTrees Time and Features Deviation

Figure 4.7. Feature importance old UC&ED (eqn. 1.1)

4.3 Classification Results
The main results of the binary classification task can be seen of tables 4.3 and 4.4. While
the basic variables alone do not contain enough information to make detailed predictions
about the value of equation 1.1, especially for the old UC&ED, they do contain enough
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(a) ExtraTrees Basic Absolute (b) ExtraTrees Additional Features Absolute

(c) ExtraTrees Time Absolute (d) ExtraTrees Time and Features Absolute

Figure 4.8. Feature importance new UC&ED (eqn. 1.1)

information to make a good classification prediction. Adding additional features and time
only improves the accuracy by 1.2 percent in the old UC&ED and around 3.6 percent in
the new one.

Random forest models obtain the best performances here, followed by the perceptron,
which outperforms the RandomForest slightly for the basic set in table 4.4. The ExtraTrees
has similar performance to the perceptron. Neural networks could be the best algorithm
given more in depth hyperparameter optimization.

Confusion matrices are analysed to obtain more information about the predictions. Figure
4.9 displays the confusion matrices for the old UC&ED. Missclassifications are evenly
distributed for the best models, such as 4.9a. However, poor models such as 4.9b, 4.9f
and 4.9g tend to wrongfully predict more ones when the ground true is zero. This implies
that the model believes more that safe situation are problematic than the opposite. A
similar situation is seen for the new UC&ED on figure 4.10, but overall performance is
worse.
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(a) Forest Basic Absolute (b) Forest Basic Deviations (c) Forest Time Features Abso-
lute

(d) Forest Time Features Devia-
tions

(e) Extra Basic Absolute (f) Extra Basic Deviations

(g) Extra Time Features Abso-
lute

(h) Extra Time Features Devia-
tions

(i) MLP basic absolute

Figure 4.9. Confusion matrix old UC&ED (0 = "secure", 1 = "insecure")
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(a) Forest Basic Absolute (b) Forest Basic Deviations (c) Forest Time Features Abso-
lute

(d) Forest Time Features Devia-
tions

(e) Extra Basic Absolute (f) Extra Basic Deviations

(g) Extra Time Features Abso-
lute

(h) Extra Time Features Devia-
tions

(i) MLP basic absolute

Figure 4.10. Confusion matrix new UC&ED (0 = "secure", 1 = "insecure")

24



4.4 Margin Results
A similar process has been followed to obtain prediction results for the margin. The results
of predicting the margin for both the old and new UC&ED can be found in tables 4.5 and
4.6 respectively. The results show that Random Forests obtain the best prediction for this
task. Compared to the previous results, no model manages to get excellent performance,
especially for the new UC&ED where the best model only achieve an R2 score of 0.8. This
suggests that the margin depends on other values that are neither in the training data,
not can be inferred from the time variable.

Another observation is that the additional features offer improvements over the models
without them, which was also not the case for the previous experiments. By looking at the
feature importance (fig 4.11 and 4.12) of those models, it can be seen that the variables
used are different from the previous experiments. Overall, the solar values have more
impact, as well as the additional features "Percentage", "Difference" and "Sum Solar". Time
still plays an important role, especially in the old UC&ED

(a) RandomForest Basic Absolute (b) RandomForest Time Absolute

(c) RandomForest Features Absolute (d) RandomForest Time and Features Absolute

Figure 4.11. Feature importance old UC&ED margin (eqn. 1.19)
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(a) RandomForest Basic Absolute (b) RandomForest Time Absolute

(c) RandomForest Features Absolute (d) RandomForest Time and Features Absolute

Figure 4.12. Feature importance new UC&ED margin (eqn. 1.19)
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Model Data Values Mean Squared
Error

R2 Score

Random Forest

Basic Absolute 0.711737203 0.300772518
Deviation 0.881036108 0.134449264

Basic without 23 Absolute 0.000041707 0.922175166
Deviation 0.000343244 0.359512635

Features Absolute 0.695835234 0.316394988
Deviation 0.913344684 0.102708553

Time Absolute 0.006516392 0.993598142
Deviation 0.006463815 0.993649795

Time / Features Absolute 0.011915081 0.988294343
Deviation 0.012053326 0.988158527

ExtraTrees

Basic Absolute 0.71962192 0.293026385
Deviation 0.940042879 0.076479615

Basic without 23 Absolute 0.000049458 0.907711717
Deviation 0.000373469 0.303113862

Features Absolute 0.721120322 0.291554319
Deviation 0.955858626 0.06094185

Time Absolute 0.006393081 0.993719286
Deviation 0.004485623 0.995593218

Time / Features Absolute 0.007821783 0.992315695
Deviation 0.006839528 0.993280685

Linear
Regression

Basic Absolute 0.956126050 0.060679125
Deviation Values 0.990504561 0.026904862

Basic without 23 Absolute 0.000433002 0.192026803
Deviation 0.000482738 0.099220158

Features Absolute 0.952170747 0.06456491
Deviation Values 0.990526349 0.026883459

Time Absolute 0.865657554 0.149557519
Deviation Values 0.924199472 0.092044553

Time / Features Absolute 0.864756878 0.150442364
Deviation Values 0.924192470 0.092051431

Multi Layer
Perceptron

Basic Absolute 0.5879882 0.422346492
Deviation Values 1.1236988 -0.103948332

Basic without 23 Absolute 0.000103044 0.807722808
Deviation 0.000713551 -0.331469635

Features Absolute 0.5736901 0.436393226
Deviation Values 1.0701481 -0.051338836

Time Absolute 0.5962338 0.414245851
Deviation Values 0.10961433 0.892312286

Time / Features Absolute 0.5873553 0.42296827
Deviation Values 0.7038876 0.308484187

Table 4.1. Evaluation of prediction for eqn. 1.1, old UC&ED
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Model Data Values Mean Squared
Error

R2 Score

Random
Forest

Basic Absolute 0.379733811 0.8167131
Deviation 0.581032674 0.719551764

Features Absolute 0.276349765 0.866613691
Deviation 0.571131357 0.724330853

Time Absolute 0.144980706 0.930021864
Deviation 0.129463471 0.9375116

Time /
Features

Absolute 0.13114375 0.936700576
Deviation 0.131535028 0.936511717

ExtraTrees

Basic Absolute 0.234034669 0.887038005
Deviation 0.5868895 0.716724837

Features Absolute 0.215895248 0.895793397
Deviation 0.576514586 0.721732519

Time Absolute 0.089706922 0.956700975
Deviation 0.143872871 0.930556585

Time /
Features

Absolute 0.079740149 0.961511658
Deviation 0.142102105 0.931411284

Linear
Regression

Basic Absolute 1.766060799 0.1475718
Deviation 1.742061735 0.159155478

Features Absolute 1.764935974 0.148114722
Deviation 1.742808771 0.158794905

Time Absolute 1.71072047 0.174283031
Deviation 1.632839843 0.211873833

Time /
Features

Absolute 1.710137572 0.17456438
Deviation 1.633427139 0.211590362

Multi
Layer
Perceptron

Basic Absolute 0.21204334 0.897652595
Deviation 0.7531615 0.636470007

Features Absolute 0.24318098 0.882623331
Deviation 0.6935733 0.665231567

Time Absolute 0.19361906 0.906545479
Deviation 0.4166859 0.798877343

Time /
Features

Absolute 0.24176078 0.883308823
Deviation 0.6461919 0.688101206

Table 4.2. Evaluation of prediction for eqn. 1.1, new UC&ED
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Model Data Values Accuracy

Random
Forest

Basic Absolute 0.967533819
Deviation 0.772320499

Features Absolute 0.970447451
Deviation 0.778355879

Time Absolute 0.977939646
Deviation 0.904474506

Time /
Features

Absolute 0.979396462
Deviation 0.917585848

ExtraTrees

Basic Absolute 0.944016649
Deviation 0.744432882

Features Absolute 0.946722164
Deviation 0.748595213

Time Absolute 0.957752341
Deviation 0.859313215

Time /
Features

Absolute 0.959833507
Deviation 0.867013528

Logistic
Regression

Basic Absolute 0.769614984
Deviation 0.664516129

Features Absolute 0.767533819
Deviation 0.645577523

Time Absolute 0.769406868
Deviation 0.704682622

Time /
Features

Absolute 0.767741935
Deviation 0.705515088

Multi
Layer
Perceptron

Basic Absolute 0.944224766
Deviation 0.767117586

Features Absolute 0.937148803
Deviation 0.779396462

Time Absolute 0.940270552
Deviation 0.88491155

Time /
Features

Absolute 0.93673257
Deviation 0.867637877

Table 4.3. Accuracy for the old UC&ED
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Model Data Values Accuracy

Random
Forest

Basic Absolute 0.922996878
Deviation 0.780437045

Features Absolute 0.931529657
Deviation 0.77710718

Time Absolute 0.95359001
Deviation 0.933610822

Time /
Features

Absolute 0.959001041
Deviation 0.937773153

ExtraTrees

Basic Absolute 0.893652445
Deviation 0.749843913

Features Absolute 0.912174818
Deviation 0.752341311

Time Absolute 0.915712799
Deviation 0.90364204

Time /
Features

Absolute 0.934027055
Deviation 0.913631634

Logistic
Regression

Basic Absolute 0.709469303
Deviation 0.664932362

Features Absolute 0.710718002
Deviation 0.651404787

Time Absolute 0.704682622
Deviation 0.769406868

Time /
Features

Absolute 0.710093652
Deviation 0.768366285

Multi
Layer
Perceptron

Basic Absolute 0.9250780437
Deviation 0.779812695

Features Absolute 0.921540062
Deviation 0.763787721

Time Absolute 0.922164412
Deviation 0.926118626

Time /
Features

Absolute 0.922372529
Deviation 0.912382934

Table 4.4. Accuracy for the new UC&ED
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Model Data Values Mean Squared
Error

R2 Score

Random
Forest

Basic Absolute 454.2787979 0.870779585
Deviation 1589.114006 0.547973685

Features Absolute 442.0468269 0.874258991
Deviation 1547.114119 0.559920627

Time Absolute 346.3173653 0.901489407
Deviation 444.6982529 0.873504788

Time /
Features

Absolute 311.4572803 0.911405421
Deviation 376.9464414 0.892776912

ExtraTrees

Basic Absolute 501.4042585 0.857374664
Deviation 1670.23334 0.524899145

Features Absolute 465.5728546 0.867566971
Deviation 1618.845249 0.53951658

Time Absolute 382.9259138 0.89107604
Deviation 475.340169 0.864788641

Time /
Features

Absolute 334.2785563 0.904913868
Deviation 401.6438177 0.885751699

Linear
Regression

Basic Absolute 2004.297826 0.429873906
Deviation 2378.713224 0.323370778

Features Absolute 1992.289078 0.433289816
Deviation 2384.317658 0.321776587

Time Absolute 1967.103849 0.440453799
Deviation 2334.518107 0.335942158

Time /
Features

Absolute 1964.037336 0.441326074
Deviation 2340.451337 0.33425444

Multi
Layer
Perceptron

Basic Absolute 791.6782 0.774805729
Deviation 2209.7493 0.371432887

Features Absolute 853.3027 0.757276546
Deviation 2068.0288 0.411745532

Time Absolute 784.93945 0.776722594
Deviation 1445.2084 0.588907882

Time /
Features

Absolute 810.3605 0.769491533
Deviation 1472.5276 0.581136903

Table 4.5. Evaluation of prediction for eqn. 1.19, old UC&ED
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Model Data Values Mean Squared
Error

R2 Score

Random
Forest

Basic Absolute 586.175182 0.706156689
Deviation 771.345808 0.613332647

Features Absolute 535.2820947 0.731668846
Deviation 746.7285477 0.625673015

Time Absolute 479.2200189 0.759772161
Deviation 548.0422622 0.725272312

Time /
Features

Absolute 382.3788546 0.808317595
Deviation 464.7858931 0.767007833

ExtraTrees

Basic Absolute 598.5920412 0.699932251
Deviation 801.6988748 0.598116981

Features Absolute 568.4132113 0.715060574
Deviation 777.316516 0.610339595

Time Absolute 504.7101396 0.746994238
Deviation 552.3087257 0.723133579

Time /
Features

Absolute 411.398436 0.793770391
Deviation 493.045907 0.752841393

Linear
Regression

Basic Absolute 1018.395776 0.489489157
Deviation 1200.406465 0.398249157

Features Absolute 1014.41408 0.491485138
Deviation 1207.37017 0.394758327

Time Absolute 1010.568891 0.49341269
Deviation 1195.212309 0.400852931

Time /
Features

Absolute 1009.888051 0.493753988
Deviation 1202.13274 0.397383794

Multi
Layer
Perceptron

Basic Absolute 678.7301 0.659759897
Deviation 1297.2612 0.349696889

Features Absolute 652.9677 0.672674311
Deviation 1000.7623 0.498328622

Time Absolute 677.8122 0.660220017
Deviation 1054.253 0.471514239

Time /
Features

Absolute 656.0337 0.671137337
Deviation 1034.7493 0.481291375

Table 4.6. Evaluation of prediction for eqn. 1.19, new UC&ED
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Chapter 5

Additional Experiments

A few other experimentation’s have been conducted to attempt both to improve the results
obtained at chapter 4, and to propose a more concrete solution to use machine learning as
a speedup for the simulation process. Both experiments conducted and results obtained
are presented in this chapter. Results won’t be presented as in-depth as previously as a
lot of information would be redundant.

5.1 Improvements

5.1.1 Improvement Idea
A first idea for improvement is to add additional input variables to the model so that it
can achieve better performance. Adding more data is usually valuable, as the models have
more parameters on which to base their decision.

At this point, the most straightforward way to increase the number of variables is to
combine the absolute and deviation inputs presented in Chapter 2 in a single dataset.
This dataset will have 194 inputs, 97 absolute values and 97 deviation values. As was
seen in the results of chapter 4 (tables 4.1 to 4.6), both absolute and deviation values can
present good performances depending on what additional variable is associated to it (time
for example) and what the target for training is.

The first experiment is to test the performance of these models on the prediction of
equations 1.1 and 1.19, using the same 1000 scenarios as previously. At the same time, a
second experiment is performed with an additional 1000 scenarios, effectively doubling
the size of both the training and the test sets. This will allow to visualize the possible
improvements that could be obtained from simply adding more data. A high difference
would indicate that the best way to improve the model is simply to add more data, while
a low or no difference indicates that the model reached close to it’s peak performance.
Note that, while in chapter 4 all results were evaluated on the same test set, this new
dataset with doubled size has a test set that differs from the ones considered previously.
Not only is it twice as large, but it is also comprised of different scenarios. Differences
in performance should thus be taken with caution, as a small increase or decrease in
performance could be attributed to this difference in test set.

Only the new UC&ED will be analyzed in this section, as this is the one that is currently
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in use for the simulations.

5.1.2 Improvement Result
The first results are presented the table 5.1 and 5.2 where table 5.1 shows the performance
for predicting the objective value of equation 1.1 and 5.2 the margin value of equation
1.19. The tables do not include results for datasets containing the time of the day or
additional features (see section 2.4). Including the time didn’t show any improvements,
which indicates that all the information contained can be inferred from the other values,
even by the decision trees. Adding extra features has been explored but not fully studied.
According to first results, they do not help in predicting the values of equation 1.1 but
help in predicting the value of equation 1.19.

The results of table 5.1 show improvements over the ones obtained from table 4.2, which
indicates that combining both absolute and deviation features is the best approach. Results
similar to the previous results including the time (see table 4.2) are obtained for random
forest and extra trees, which confirms the idea that time information can be retrieved
from the given set of values. Multi layer perceptron improves the previous best model by
3 percent, and improves by 9.4 percent upon the previous best MLP model.

Results on margin are more mixed, as no model managed to reach the 0.80 score obtained
in table 4.6. While thorough research has not been performed on this subject, it appears
that adding back the features improves the performance by about 2 percent, which would
give a similar result to the one obtained in table 4.6. Nevertheless, performance on margin
is still somewhat unsatisfying.

The feature importances and the scatter plots showing the differences between ground
truth and prediction are presented in the appendix B.

Model Mean Squared
Error (1000
scenarios)

R2 Score (1000
scenarios)

Mean Squared
Error (2000
scenarios)

R2 Score (2000
scenarios)

Random Forest 0.137558253 0.933604475 0.140404107 0.926508378
Extra Trees 0.09717301 0.953097303 0.083552595 0.956266125
Multi Layer Per-
ceptron

0.016907455 0.991839244 0.01651777 0.991354116

Table 5.1. Mean Squared Error and R2 score for objective value prediction

Model Mean Squared
Error (1000
scenarios)

R2 Score (1000
scenarios)

Mean Squared
Error (2000
scenarios)

R2 Score (2000
scenarios)

Random Forest 453.9974189 0.772415979 614.3179838 0.704259924
Extra Trees 493.1018207 0.752813364 630.8655803 0.696293712
Multi Layer Per-
ceptron

484.67596 0.757037162 569.1941 0.725983105

Table 5.2. Mean Squared Error and R2 score for margin prediction
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5.2 Advanced classification
Instead of simply predicting 0 or 1 based on the value of equation 1.1 like in section
4.3, a third class has been added in this experiment. The goal of this third class is the
include the value of the margin equation 1.19 in the classification. The three classes are 0
when margin is ≥ 0 (which implies that equation 1.1 ≤ 0.0005), 1 when margin = 0 and
equation 1.1 ≤ 0.0005, and 2 otherwise. To perform the task of learning this distribution,
the Random Forest and Extra Trees models are the same as the ones used for classification
in chapter 4. The perceptron however is changed as a sigmoid activation function is not
fitted for three class prediction. Instead of outputting a single number between 0 and
1, the model now outputs three numbers. Thanks to a softmax [9] activation layer, the
output of the MLP can be converted to the form of a probability distribution across each
class. From there, accuracy can be estimated by taking the argmax of the output as the
predicted class. To train the MLP, cross entropy loss is used. The hyperparameters used
are the same were chosen by evaluating different possibilities on a validation set. It is the
same hyperparameters as previous classifications (See section 3.3.2), but 500 epochs. The
training loss has been balanced to account for class imbalances by adjusting weights on
the cross-entropy loss.

The results of the classification can be seen in table 5.3. Extra trees, random forest and
MLP perform similarly to what is given in table 4.4, however the task is more challenging
as there are three classes to predict from instead of 2. Contrarily to the regression problems,
adding more data seems beneficial for this classification task, as all models improve by .5
to .8 percent accuracy. In the case of the MLP, cross entropy loss decreases from 0.58 to
0.50, which is a notable improvement.

Figure 5.1 gives more information about the errors made by each model. Focus is made
on 5.1f as it is the model with the best performance, and all confusion matrices follow a
similar pattern. Classification for classes 0 and 2 are relatively strong with an accuracy of
95.7 and 97.8 percent respectively. Classification for class 1 is the most error prone, with
an accuracy of just 71.9 percent. This error is obtained despite the rescaling performed
in the loss of the MLP to account for class imbalances. Lack of data might still be
one explanation for this situation. However, the class 1 is the class with the strictest
requirements (eqn. 1.19 = 0 and eqn. 1.1 < 0.0005), which also influences the error rate
of the prediction.

Model Accuracy (1000) Accuracy (2000)
Random Forest 0.925078044 0.930452889
Extra Trees 0.903850156 0.910046851
Multi Layer Per-
ceptron

0.934027055 0.935137949

Table 5.3. Accuracy for 3-class prediction

Given these results, it seems unlikely that the classification prediction can be used as is to
replace the simulation, as 6.7 percent of misclassification is still high.

Another possibility is to only look at the classifier for the class 2 (objective value > 0.0005).
In the entire training set, there are 4231 times where the prediction of the model for the
class 2 is over 34 (before applying the softmax activation). Among these 4231 predictions,
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(a) Random Forest (1000) (b) Random Forest (2000) (c) Extra Tree (1000)

(d) Extra Tree (2000) (e) Multi Layer Perceptron
(1000)

(f) Multi Layer Perceptron
(2000)

Figure 5.1. Confusion matrix

the accuracy exceeds 0.999, suggesting less than one error for every 1000 entries. On
these predictions, the best model shown at section 5.1 can then be applied to estimate the
equation value. The other should still be evaluated through the simulator, as both this
classification and the models shown in table 5.2 have difficulties predicting the margin
value. Assuming that the time to get the predictions from the machine learning model
is negligible compared to running the simulation, this would still result in a speedup of
about 44 percent (the proportion of predictions that fit the criteria).

To obtain a better speedup, it is necessary to perform more analysis on the margin (eqn.
1.19), and why it is so difficult to predict.
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Conclusion

This paper aimed to understand and analyze machine learning results for tasks predicting
the reliability of a power grid. Chapter 2 showed interesting results by analysing the
forecasts as well as the unit commitment, objective value (eqn. 1.1) and margin value (eqn.
1.19) for both old and new UC&ED. It was shown that the old UC&ED presents issues at
the last hour of the day which were corrected in the new one. Furthermore, it displayed
the distributions of equations 1.1 and 1.19 per hour of the day, which gives valuable insight
into the day-ahead situation. Finally, it also highlighted multiple particularities of the
Belderbos model, like the high renewable energy generation.

Afterwards, a large number of experiments were conducted. Chapter 4 studied the
performance of four machine learning algorithms on different predictive tasks. Encouraging
results were obtained for the prediction of equation 1.1 and more mixed results for margin
equation 1.19. Feature importance analysis showed that the old UC&ED requires the
time of the day to make decent predictions, which is influenced by the extreme outliers
observed at the last hour of the day. Otherwise, it showed that wind variables are usually
more important that load or solar variables to make predictions about 1.1, while equations
1.19 showed stronger correlation with solar values.

Chapter 5 then performed additional experiments that improved the predictions across
all tasks. Chapter 5 also suggested a way to utilize a classification task to speedup the
simulation process. However, this suggestion should be taken with a grain of salt, as no
extensive testing has been done to confirm that it works.

In the future, it would be valuable to experiment more with hyperparameter tuning,
especially for the multilayer perceptron. Due to the time it takes to perform cross-
validation, only a few values were tried. Given more computational resources, performing
more tuning should help to improve performance. Another study to perform would be to
look more in detail at the margin values and understand why no model is able to predict
it satisfyingly.
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Appendix A

Detailed Feature importance

Figure A.1. Feature Importance basic random forest old UC&ED
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Figure A.2. Feature Importance no 23 random forest old UC&ED

Figure A.3. Feature Importance Hour ExtraTrees old UC&ED
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Figure A.4. Feature Importance Hour/Features ExtraTrees old UC&ED

Figure A.5. Feature Importance Basic ExtraTrees new UC&ED
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Figure A.6. Feature Importance Hour ExtraTrees new UC&ED

Figure A.7. Feature Importance Addditional Features ExtraTrees new UC&ED
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(a) Hour / Features Extra Trees

Figure A.8. Feature Importance Hour/Features ExtraTrees new UC&ED
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Appendix B

Additional experiments (Ground
Truth and Feature Importance)
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(a) Random Forest (1000 scenarios) (b) Random Forest (2000 scenarios)

(c) Extra Trees (1000 scenarios) (d) Extra Trees (2000 scenarios)

(e) MLP (1000 scenarios) (f) MLP (2000 scenarios)

Figure B.1. Ground Truth vs Prediction for objective value (eqn. 1.1)
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(a) Random Forest (1000 scenarios) (b) Random Forest (2000 scenarios)

(c) Extra Trees (1000 scenarios) (d) Extra Trees (2000 scenarios)

(e) MLP (1000 scenarios) (f) MLP (2000 scenarios)

Figure B.2. Ground Truth vs Prediction for margin value (eqn. 1.19)
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(a) Random Forest (1000 scenarios) (b) Random Forest (2000 scenarios)

(c) Extra Trees (1000 scenarios) (d) Extra Trees (2000 scenarios)

Figure B.3. Feature importance for objective value (eqn. 1.1)
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(a) Random Forest (1000 scenarios) (b) Random Forest (2000 scenarios)

(c) Extra Trees (1000 scenarios) (d) Extra Trees (2000 scenarios)

Figure B.4. Feature importance for margin value (eqn. 1.19)
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(a) Random Forest (1000 scenarios) (b) Random Forest (2000 scenarios)

(c) Extra Trees (1000 scenarios) (d) Extra Trees (2000 scenarios)

Figure B.5. Feature importance for advanced classification
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