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Abstract

Priority service and its generalization, multilevel
demand subscription, have been proposed in the
literature as alternatives to real-time pricing in
residential demand response aggregation. This paper
proposes a modeling approach for designing multilevel
demand subscription menus that are comparable to
priority service pricing menus. The menus are designed
as the equilibrium solution to a Stackelberg game, which
is modeled as a bilevel optimization problem involving a
vertically integrated utility and consumers. The problem
is reformulated and solved as a mixed integer linear
program. The menus are compared in a realistic model
of the Belgian power market.

1. Introduction

Despite advances in information and communication
technology which support the deployment of demand
response, real-time pricing has encountered challenges
in fully delivering its promise for mobilizing
demand-side flexibility [1, 2]. To a certain extent,
this is due to the fact that residential consumers do
not have sufficient financial incentives or attention
bandwidth for engaging in the real-time trading of
electricity. This has motivated the development of
residential demand response aggregation paradigms
based on the premise that households view electricity as
a service with differentiated quality [3, 4, 5, 6]. Inspired
by successful examples of quality differentiation in
other deregulated industries, these alternative demand
response paradigms aim at striking a balance between
economic efficiency and implementation complexity.

Priority service [7] corresponds to the most basic
variation of quality differentiation. Priority service
differentiates electricity supply according to reliability,
with higher reliability corresponding to a higher price.
In this setting of asymmetric information, households
are characterized by a privately known valuation that
the aggregator does not have access to. The aggregator

is then tasked with designing a menu of services,
such that consumers self-select reliability levels that
are consistent with the reliability that the inherently
stochastic supply mix of the aggregator can deliver.
Chao [7] demonstrates how an aggregator can design
such an optimal menu by relying on an estimate of
the system demand function, which is equivalent to a
distribution of consumer types. Other approaches in
the literature use quality differentiation along different
dimensions, for example the deadline of delivering a
certain amount of energy [8, 9, 10] in the case of
deferrable demand.

Multilevel demand subscription [11] generalizes
this setting by allowing the aggregator to differentiate
service along reliability and duration. The challenge
of information asymmetry remains, with consumer
types now characterized by a privately known index
corresponding to their position on the system load
duration curve. The aggregator uses this information
in order to design a service offering that differentiates
prices as a function of both reliability and duration. Note
that after subscribing to a service offering (for multilevel
demand subscription or for priority service), the
consumer can be surveyed by a utility through customer
satisfaction surveys. This creates the possibility for
the utility to improve the design of the menu through
iterative communication with consumers and adaption
of the offered menu.

Whereas the aforementioned theory of quality
differentiation [7, 11] is a valuable starting point
for investigating alternatives to real-time pricing, it
is limited to analytical models that rely on stringent
assumptions (e.g. synchronization of loads, idealized
and abstract representations of households). We provide
two main contributions in this work. (i) Inspired by
recent research on priority service [5], we cast the
multilevel demand subscription menu design problem
of Chao [11] as a Stackelberg game, which we express
equivalently as a mixed integer linear program. For this
purpose, we define a mapping from time sorted in a load
duration curve to real time. We propose a fuse limit



model in the spirit of Margellos [4] in order to compute
demand functions for individual types of households.
In order to accommodate non-synchronous loads, we
approximate the resulting system demand function, in
order to arrive to concave system demand function that
allows us to apply the standard menu design theory [11].
(ii) We use this reformulation in order to perform a case
study that compares the two paradigms on eight types of
households in a realistic model of the Belgian market.
We use our reformulation in order to represent complex
households with distributed storage and local stochastic
renewable supply, thereby extending the original theory
[7, 11] to a realistic modeling setting.

2. Overview of Priority Service and
Multilevel Demand Subscription

2.1. Priority Service

In priority service, electricity is considered as a
service with different levels of quality. The feature
of service that differentiates quality is reliability.
Concretely, an aggregator proposes a set of options for
procuring capacity strips. Each option is characterized
by a different level of reliability. More reliable options
are more expensive to procure. In this work, we consider
three reliability differentiated options following the
ColorPower concept [6]. Based on the offered menu, the
household subscribes to a particular amount of capacity
for each option, and enrolls in a long term (e.g. annual)
contract for electricity service. Once a household is
subscribed, a home energy router allocates particular
devices within the house to strips of different color by
ensuring that the mean power within an interval under a
certain option does not exceed the subscribed amount of
kilowatts for that particular color.

In offering priority service contracts to residential
consumers, the utility commits to a certain level
of reliability for each service option. This level
of reliability must be respected on average over an
extended period of service (e.g. annually) even if certain
periods of service may be characterized by fluctuations
around this average [5]. In a central dispatch setting, the
utility interrupts colors in order of decreasing reliability,
since the menu is designed so that higher-valuation
consumers self-select higher levels of reliability. The
task of the utility is to design the menus carefully,
in order to ensure that households are segmented
adequately. In doing so, the information asymmetry
challenge is that the aggregator is not aware of the
valuation of each individual consumer for power, as this
is private information. The utility can only estimate
aggregate statistical information about the consumer

population [5, 7] in the form of demand functions.

2.2. Multilevel Demand Subscription

Multilevel demand subscription generalizes the
priority service model of the previous section. From
the point of view of consumers, kilowatts of different
priority levels (i.e. colors) are “topped up” with credits.
More credits entitle customers to use more hours of
power of a certain quality, but cost more. The proposed
contract is a forward contract. This implies that there
is an inherent “override” option (which is activated
automatically when the customer exceeds the capacity
and duration limits of the contract), however in that
case the customer would need to procure any additional
consumption at the prevailing real-time price. Thus, the
energy router within the home needs to respect not only
the power limit of each color, but also the total number
of credits over the service period (e.g. over the week or
day). Clearly, this service offering presents increased
complexity from the point of view of the household.
However, it also allows the utility to better discriminate
among consumer types. This contributes towards more
efficient allocation of power to flexible demand.

Accordingly, the utility commits not only to
honoring the reliability of each service option, but also
to honoring the duration of that option. The task
of pricing the menu also becomes more challenging.
Although the utility can still rely on aggregate statistical
information about the population, it is now required
to estimate a load duration curve for the population,
parametric on a retail price.

3. Characterizing Household Types

As we explain in section 2.2, the utility must
quantify the valuation of an increment of power for
a certain duration in order to design the multilevel
demand subscription menu that is offered to consumers.
The idea of our proposed approach is to estimate the
marginal value of an increment in the fuse limit of a
household. However, due to the coexistence of storage
and batteries in a household, there is no guarantee
that this marginal value is a concave function of the
duration of consumption. Therefore, in a second phase,
we compute the closest concave approximation of this
estimate. We use this function as input to the menu
design problem of section 4.

In order to estimate the valuation of an increment
of power for a certain duration, we propose a stochastic
optimization program for each type of household. This
mathematical program allows us to represent battery and
load shedding decisions over a day, when we enforce
a fuse limit on the household that is equipped with



solar panels and must serve a mix of flexible and
inflexible load. We model two types of uncertainty,
long-term and short-term. Long-term uncertainty is
represented by a set of scenarios that correspond to
seasonal variations. In the case study of section 6, the set
S consists of weekdays and weekends for each season of
the year. Each scenario s ∈ S occurs with a probability
Ps. For each scenario, short-term uncertainty, which
corresponds to the real-time production of solar panels,
is modeled by a scenario tree with outcomes of solar
panel production for each time stage of the day. We
denote by ωs[t] ∈ Ωs[t] the sequence of solar panel
production up to stage t, while in scenario s.

We express the household model that we use for
creating a system load duration curve as follows, for
household type h ∈ H:

(HVh) :

min
ls,nd,
e,bc,bd

Vcut
∑
s∈S

∑
t∈T

∑
ωs

[t]
∈Ωs

[t]

PsP
s
t,ωs

[t]
lst,s,ωs

[t]

s.t. 0 ≤ bdt,s,ωs
[t]
≤ BDh, t ∈ T , s ∈ S,

ωs[t] ∈ Ωs[t] (1)

0 ≤ bct,s,ωs
[t]
≤ BCh, t ∈ T , s ∈ S,

ωs[t] ∈ Ωs[t] (2)

0 ≤ et,s,ωs
[t]
≤ Eh, t ∈ T , s ∈ S,

ωs[t] ∈ Ωs[t] (3)

e1,s,ωs
1

= −
bd1,s,ωs

1

ηdh
+ bc1,s,ωs

1
· ηch,

s ∈ S, ωs1 ∈ Ωs1 (4)

et,s,ωs
[t]

= et−1,s,A(ωs
[t]

) −
bdt,s,ωs

[t]

ηdh

+ bct,s,ωs
[t]
· ηch, t ∈ T \ {1},

s ∈ S, ωs[t] ∈ Ωs[t] (5)

DPt,s,h − lst,s,ωs
[t]

+ bct,s,ωs
[t]
− PVt,s,ωs

t

− bdt,s,ωs
[t]

= ndt,s,ωs
[t]
, t ∈ T ,

s ∈ S, ωs[t] ∈ Ωs[t] (6)

(λt,s,ωs
[t]

) : ndt,s,ωs
[t]
≤ FL, t ∈ T , s ∈ S,

ωs[t] ∈ Ωs[t] (7)

lst,s,ωs
[t]
≥ 0, t ∈ T , s ∈ S, ωs[t] ∈ Ωs[t] (8)

The goal of the household is to minimize its economic
damage from not serving part of its load. The parameter
Vcut represents the risk-adjusted cost of consumers for

accessing the spot market. Constraints (1), (2) and
(3) represent, respectively, the discharge power, charge
power and storage capacity limits of the household
battery. Constraints (4) and (5) describe the dynamics
of the battery, with ηch and ηdh expressing respectively the
charge and discharge efficiency of the household battery.
The power balance in the household is represented by
constraint (6) where parameter DPt,s,h corresponds to
the inflexible load of household type h at time t for
scenario s and PVt,s,ωt

is the solar panel production
sample for that time stage. Finally, constraint (7) limits
the power that can be drawn from the grid by the
household using parameter FL (i.e. the fuse limit of
the household).

The dual multiplier λt,s,ω[t]
of constraint (7) is used

for quantifying the incremental value of the fuse limit.
Concretely, the valuation for an additional unit of power
in period t of actual operations, given fuse limit FL,
is computed as

∑
s∈S

∑
ω[t]∈Ωs

[t]
λt,s,ω[t]

, t ∈ T . This

valuation is then derived for different levels of fuse limit.
We use this information in order to create a demand
function for increments of power for each household
type at a given operating interval.

4. Multilevel Demand Subscription Menu
Design and Reformulation as an MILP

We now cast the multilevel demand subscription
pricing problem as a bilevel optimization program. The
problem has been formulated and solved in the literature
as a Stackelberg equilibrium [11]. We depart from the
classical description of the problem that is developed in
[11], in order to allow for a more general representation
of uncertainty and production constraints which are
typically encountered in production simulation models.
In this respect, we follow the approach described in
[5], where the Stackelberg equilibrium formulation
of priority service pricing [7] is cast as a bilevel
optimization program. Bilevel formulations were
already adopted in the literature to design other demand
response contracts, e.g. in [12]. We reformulate
the problem as a mixed integer linear program by
exploiting its structure. The exposition here focuses
on multilevel demand subscription pricing, with priority
service pricing being a special case. The notation of
each model is available in the electronic supplement,
along with a toy example that emphasizes the value
of multilevel demand subscription compared to priority
service.1

1The electronic supplement is available at the following
link: https://perso.uclouvain.be/anthony.
papavasiliou/public_html/ElectronicAppendix_
HICSS2021_MDSPMenuDesign.pdf



4.1. Bilevel Mathematical Structure

Chao [11] casts the multilevel demand subscription
pricing problem as a Stackelberg equilirbium. The
leader of this Stackelberg game is the utility that designs
a multilevel demand subscription menu that is offered to
consumers, who are the followers. Due to information
asymmetry (see section 2.2), the leader integrates in the
bilevel program the optimal reaction of the followers
to the menu design problem. This gives rise to a
mathematical program with equilibrium constraints that
also integrates menu design with unit commitment. Note
that, following the literature [11], we do not consider
transmission or distributions constraints in our model.
This bilevel model can be represented abstractly as
follows, and is further illustrated in Figure 1.

max
m,n,o,p,r,π

SW (m,n,o,p,d, r) (9)

s.t. (m,n,o,p,d) ∈ X (10)
r = φ(d,σ?) (11)
σ? ∈ arg max

σ
{CS(r,π) : σ ∈ Σ} (12)

Consumers

Producer

Figure 1. Interaction between the producer and

consumers in the multilevel demand subscription

bilevel model.

In this model, the variables m,n,o,p correspond
respectively to startup and shutdown decisions, unit
commitment and power generation. The subscription
quantity of each consumer to each option of the
multilevel demand subscription menu is indicated by σ,
while the supply to each option is indicated by d. The
reliability, duration and price of the options in the menu
are denoted by r, T and π respectively. We assume that
the duration is an exogenous parameter, and is therefore
not a variable in the model.

The objective of the utility in this mathematical
program is to maximize social welfare, as represented by
function SW in Eq. (9). The technical constraints of the
producer are given in Eq. (10). Constraint (11) indicates
that the designed price menu needs to deliver a promised
level of reliability during a certain duration, which is
influenced by the way consumers react to the offered

menu. Finally, consumers decide on their subscription
by maximizing their individual surplus (represented by
the function CS), as shown by Eq. (12).

4.2. Representation of the Household by the
Utility

From the point of view of the utility that is designing
a service menu, the population of households can be
represented by a distribution over valuations. This
distribution is encoded in the parameters (Dl, Vl(t)).
The function Vl(t) is a non-decreasing function of t,
since more hours of consumption increase the benefit
of the household. Note that the formulation of the
consumer problem below implicitly assumes that Vl(t)
is further a concave function of t, otherwise it would be
needed to sum over time periods in the first term of the
objective function. Section 3 describes how the utility
can estimate this function based on information about
the distribution of installed equipment in residential
households.

Given a set of consumer types L, each of them as
a follower subscribes to service options from a menu
with |I| · |J | options. The set I expresses the offered
reliability, while the set J includes the set of duration
options. Each consumer type l then solves the following
problem for choosing an option from the menu, given
the reliability ri, duration Tj , and price πi,j of each
option from the upper-level problem:

(CPl) : max
σl

∑
i∈I,j∈J

σl,i,j

(
ri · Vl(Tj)− πi,j

)
(13)

s.t. σl,i,j ≥ 0, i ∈ I, j ∈ J (14)

(γl) :
∑

i∈I,j∈J
σl,i,j ≤ Dl (15)

The goal of the consumer is to maximize its profit
from procuring an option (i, j). The first term in the
objective function of Eq. (13) is the expected benefit
from procuring option (i, j). The constraint of Eq.
(15) expresses the fact that options are stacked up to
the amount of kilowatts that the household wishes to
procure.

In order to obtain a MILP formulation of the bilevel
program presented in section 4.1, and since the producer
accounts for the optimal reaction for consumers, we
would like to use the optimality conditions of the
consumer model as constraints for the producer model.
Thanks to the linear format of the consumer model, the
optimality conditions can be described as a compilation
of primal and dual feasibility and strong duality
conditions [5]. The dual (CDl) of the optimal menu



selection problem for the consumer is given as follows:

(CDl) : min
γl

γl ·Dl (16)

s.t. γl ≥ ri · Vl(Tj)− πi,j , i ∈ I, j ∈ J (17)
γl ≥ 0 (18)

Strong duality is expressed by Eq. (19):

γl ·Dl =
∑

i∈I,j∈J
σl,i,j

(
ri · Vl(Tj)− πi,j

)
, l ∈ L (19)

By exploiting further the particular structure of the
consumer problem, we demonstrate in proposition 1 that
any consumer type l may as well limit its choice to a
unique option out of the menu offered by the utility. This
observation is an essential tool to allow the formulation
of the Stackelberg equilibrium as a mixed integer linear
program.

Proposition 1. There exists (σ̃l,i,j , i ∈ I, j ∈ J ) with
σ̃l,i,j ∈ {0, Dl} which attains the optimal objective
function value.

Proof. The proof of this proposition follows the
approach of [5] and is available in the electronic
supplement.

4.3. Utility

The utility acts as the leader in the Stackelberg game,
and aims at pricing the menu so as to maximize system
welfare, while accounting for the optimal response of
the households to the offered menu. Thus, the utility
solves a unit commitment model by accounting for the
individual choice of options σ?l,i,j by each consumer
type, which is the optimal solution to model (CPl)
described in section 4.2.

In addition, the utility owns a set of renewable assets.
Their production is characterized by a set of scenarios.
The uncertainty taken into account in the menu design
program only corresponds to long-term uncertainty,
such as seasonal variations, and is represented by the
scenario set S (see section 3). Note that the additional
short-term uncertainty considered in section 3 is not
integrated in this model, since the menu design is
a long-term problem. This optimization program is
treated as a two-stage problem (menu design in the first
stage, operation of the grid in the second stage). The
non-negative vector d corresponds to the amount of
power that is offered to different options under different
time periods and scenarios. The optimization is carried
out over a horizon |T |. In the test case of section 6, this
horizon corresponds to 24 hours.

The menu design problem of the utility can be
summarized as follows:

(MD) :

max
m,n,o,
d,p,π,r

−
∑

s∈S, g∈G,
t∈T

Ps · hg(mg,t,s, ng,t,s, og,t,s, pg,t,s)

+
∑

i∈I,l∈L,
j∈J

σ?l,i,j(r,π) · Vl(Tj) · ri (20)

s.t. fg(mg,t,s, ng,t,s, og,t,s, pg,t,s) ≤ 0, g ∈ G,
s ∈ S (21)∑

i∈I,j∈J
di,j,t,s =

∑
g∈G

pg,t,s +Rt,s, t ∈ T ,
s ∈ S (22)

di,j,t,s ≤ Nj,t
∑
l∈L

σ?l,i,j(r,π), i ∈ I,

j ∈ J , t ∈ T , s ∈ S (23)

ri · Tj
∑
l∈L

σ?l,i,j(r,π) =
∑

s∈S, t∈T
Ps · di,j,t,s,

i ∈ I, j ∈ J (24)
di,j,t,s ≥ 0, i ∈ I, j ∈ J , t ∈ T , s ∈ S (25)
pg,t,s ≥ 0, g ∈ G, t ∈ T , s ∈ S (26)
mg,t,s, ng,t,s, og,t,s ∈ {0, 1}, g ∈ G,

t ∈ T , s ∈ S (27)

The goal of the utility, which is expressed in the
objective function of Eq. (20), is to maximize social
welfare. The first term in the objective function
corresponds to the expected production cost of the
utility and the second term to the consumer benefit, as
estimated from the utility based on the load duration
curve that is estimated in section 3. The function
hg(mg,t,s, ng,t,s, og,t,s, pg,t,s) expresses the production
cost of a generator, while the vector of constraints in Eq.
(21) encodes linear production constraints that relate to
unit commitment and the dispatch of conventional units,
such as ramp rates, minimum up and down times, and so
on. Power balance is expressed in constraint (22), where
Rt,s indicates the amount of renewable (system-level
solar and wind) production in period t under scenario
s. Constraint (23) expresses the fact that a consumer
type can only be served if that type is requesting power
at a given interval, and if that interval is served under
option j ∈ J . The binary parameter Nj,t determines
whether a certain duration option j ∈ J is being served
in time period t of actual operations or not. Note
that, given a duration option j ∈ J and a mapping
from the time indexing of a load duration curve to the
time indexing of actual operations, we can define this
indicator. Moreover, by definition,

∑
t∈T Nj,t = Tj .

In other words, service option j corresponds to Tj time
periods of service. Finally, constraint (24) ensures that



an option i ∈ I receives the requested reliability ri.

4.4. Bilevel Formulation of Multilevel
Demand Subscription Pricing

The Stackelberg game that is described in sections
4.2 can be formulated equivalently as a mixed integer
linear program, following a similar approach to [5].
Firstly, note that Proposition 1 allows us to represent
the continuous variable σl,i,j which corresponds to the
subscription choice of type l consumers as the following
product, σl,i,j = Dl · µl,i,j , where µl,i,j ∈ {0, 1} are
binary variables.

In order to reduce the bilevel program to a
single-level problem, we append the optimality
conditions of the consumer model to the utility menu
design program. Here, we consider the reliability ri,
price πi,j and subscription to each option as variables.
Moreover, we replace the subscription variables σl,i,j
by the previously mentioned product. These optimality
conditions correspond to primal feasibility (Eq. (14)
and (15)), dual feasibility (Eq. (17) and (18)) and strong
duality (Eq. (19)).

We now tackle the non-convex constraints resulting
from the products ri · µl,i,j and πi,j · µl,i,j . Using
McCormick envelopes, we linearize these products. In
particular, note that reliability is naturally within the
interval 0 ≤ ri ≤ 1, and price is within the interval
0 ≤ πi,j ≤ Π+, where Π+ corresponds to a price limit.
This allows us to replace πi,j · µl,i,j by a new variable
yl,i,j , and ri · µl,i,j by another one wl,i,j . Therefore, the
strong duality constraint (19) for each load type l ∈ L
can be rewritten as follows:

γl =
∑

i∈I,j∈J
wl,i,j · Vl(Tj)−

∑
i∈I,j∈J

yl,i,j (28)

0 ≤ yl,i,j ≤ Π+ · µl,i,j , i ∈ I, j ∈ J (29)
yl,i,j ≤ πi,j , i ∈ I, j ∈ J (30)
yl,i,j ≥ Π+ · µl,i,j + πi,j −Π+, i ∈ I, j ∈ J (31)
0 ≤ wl,i,j ≤ µl,i,j , i ∈ I, j ∈ J (32)
wl,i,j ≤ ri, i ∈ I, j ∈ J (33)
wl,i,j ≥ µl,i,j + ri − 1, i ∈ I, j ∈ J (34)
0 ≤ ri ≤ 1, i ∈ I (35)

0 ≤ πi,j ≤ Π+, i ∈ I, j ∈ J (36)
µl,i,j ∈ {0, 1}, i ∈ I, j ∈ J (37)

The final mixed integer linear program is expressed as a
single-level MILP as follows:

(MILP ) :

max
m,n,o,d,
p,π,r,

µ,γ,y,w

−
∑
s∈S,
g∈G

Ps · hg(mg,t,s, ng,t,s, og,t,s, pg,t,s)

+
∑

i∈I,l∈L,
j∈J

Dl · Vl(Tj) · wl,i,j (38)

s.t. fg(mg,t,s, ng,t,s, og,t,s, pg,t,s) ≤ 0, g ∈ G,
s ∈ S (39)∑

i∈I,j∈J
di,j,t,s =

∑
g∈G

pg,t,s +Rt,s, t ∈ T ,
s ∈ S (40)

di,j,t,s ≤
∑
l∈L

Dl ·Nj,t · µl,i,j , i ∈ I,

j ∈ J , t ∈ T , s ∈ S (41)

Tj
∑
l∈L

Dl · wl,i,j =
∑

s∈S, t∈T
Ps di,j,t,s,

i ∈ I, j ∈ J (42)
di,j,t,s ≥ 0, i ∈ I, j ∈ J , t ∈ T ,

s ∈ S (43)
pg,t,s ≥ 0, g ∈ G, t ∈ T , s ∈ S (44)
mg,t,s, ng,t,s, og,t,s ∈ {0, 1}, g ∈ G,

t ∈ T , s ∈ S (45)∑
i∈I,j∈J

µl,i,j ≤ 1, l ∈ L (46)

γl ≥ ri · Vl(Tj)− πi,j , i ∈ I, j ∈ J ,
l ∈ L (47)

γl ≥ 0, l ∈ L (48)
(28)− (37)

5. Household Subscription

Once the menu design program of section 4.4
is solved in order to obtain a multilevel demand
subscription menu, each household must determine
which specific option to procure. Thus, each household
type h ∈ H solves a menu subscription problem.

Following the model of section 3, we account for
short and long-term uncertainty. Long-term uncertainty
corresponds to seasonal variations and is represented
by the set of scenarios S. Short-term uncertainty
is comprised of the real-time production of solar
panels, and the availability of each multilevel demand
subscription option. Short-term uncertainty is modeled
as a scenario tree. We depict short-term uncertainty by
ω[t] = (ωs[t], ω

c
[t]) ∈ (Ωs[t] × Ωc[t]) = Ω[t], where ωs[t]

and ωc[t] correspond respectively to a sequence of rooftop
solar production and to a sequence of ON/OFF states for
each option in the multilevel demand subscription menu
up to stage t. Note that P s,ct,ω[t]

represents the probability
of observing the sequence ω[t] in the scenario tree of
scenario s ∈ S.

The household subscription level to each option



is represented by variable σh,i,j . This decision is
not indexed by scenario, because this choice does
not depend on each scenario (i.e. it remains the
same over all seasons and weekdays/weekends). Daily
operational decisions, represented by the following
variables (ls,nd,bd,bc, e), are indexed by s ∈ S
and ω[t] ∈ Ω[t], because long-term and short-term
realizations of uncertainty will influence household
operational decisions. The entire optimization of the
household is modeled using the following stochastic
program:

(HCh) :

min
σ,ls,nd,
bd,bc,e

∑
s∈S

∑
t∈T

∑
ω[t]∈Ω[t]

Vcut · Ps · P s,ct,ω[t]
· lst,s,ω[t]

+
∑
i∈I

∑
j∈J

πi,j · σh,i,j (49)

s.t. 0 ≤ bdt,s,ω[t]
≤ BDh, t ∈ T , s ∈ S,

ω[t] ∈ Ω[t] (50)
0 ≤ bct,s,ω[t]

≤ BCh, t ∈ T , s ∈ S,
ω[t] ∈ Ω[t] (51)

0 ≤ et,s,ω[t]
≤ Eh, t ∈ T , s ∈ S,

ω[t] ∈ Ω[t] (52)

e1,s,ω1
= bc1,s,ω1

· ηch −
bd1,s,ω1

ηdh
,

s ∈ S, ω[t] ∈ Ω[t] (53)

et,s,ω[t]
= et−1,s,ω[t]

−
bdt,s,ω[t]

ηdh

+ bct,s,ω[t]
· ηch, t ∈ T \ {1},

s ∈ S, ω[t] ∈ Ω[t] (54)
DPt,s,h − lst,s,ω[t]

+ bct,s,ω[t]
− PVt,s,ωs

t

− bdt,s,ω[t]
=
∑
i∈I

ndi,t,s,ω[t]
, t ∈ T , s ∈ S,

ω[t] = (ωs[t], ω
c
[t]) ∈ (Ωs[t] × Ωc[t]) (55)

ndi,t,s,ω[t]
≤
∑
j∈J

σh,i,j · 1[i,t,ωc
t ], i ∈ I,

s ∈ S, (ωs[t], ω
c
[t]) ∈ Ω[t] (56)∑

t∈T
ndi,t,s,ω[t]

≤
∑
j∈J

Tj · σh,i,j , i ∈ I,

t ∈ T , s ∈ S, ω[t] ∈ Ω[t] (57)
lst,s,ω[t]

≥ 0, t ∈ T , s ∈ S, ω[t] ∈ Ω[t] (58)

The notation and constraints of the model are similar to
those in section 3. The goal of the household, depicted
in Eq. (49), is to minimize the cost of load shedding
along with the cost of subscribing to a particular option

of the proposed menu. Constraints (50) to (54) detail
the functioning of the battery in the household. The
power balance constraint for the house is given by Eq.
(55), where the net demand of the household drawn
from the grid variable ndi,t,s,ω[t]

is now indexed by the
different reliability option of the proposed menu. Eq.
(56) expresses the upper limit on net demand that the
household is entitled to. The indicator variable 1[i,t,ωc

t ]

indicates whether a certain reliability level i is being
served at a given stage of a sequence of outcomes or
not. Constraint (57) imposes that the amount of energy
consumed under a certain option cannot exceed the total
energy credits that are topped up to that reliability option
i ∈ I.

6. Illustration

6.1. Test System

We consider the Belgian system in a forward-looking
scenario of the year 2050. We work with a representative
day which is split into blocks of 4 hours (i.e. 6 time
stages per day).

The conventional generation fleet of the model
consists of 55 units. The installed capacity of each
technology follows the projected capacity of the year
2050, according to the EU 2050 reference scenario [13].
The technical specifications of the units are available
from the website of the Belgian TSO Elia [14]. The
installed capacity of conventional generators, which
totals 15784 MW, can be broken down as follows: gas
(14965 MW), oil (10 MW), biomass (542 MW), and
waste (267 MW). The long-term maintenance schedule
of units is accounted for by derating the maximum
capacity of the units by a certain availability ratio. The
availability ratio follows the hourly profiles of 2015
[14].

Long-term uncertainty is modeled by eight
representative days (scenarios s ∈ S) corresponding to
one representative weekday and one weekend day in
each season of the year. For each scenario, an import
profile, an availability ratio, system and household level
load profiles, and wind and solar production profiles are
created with 4 hours resolution. The import profiles are
computed as the mean profile for each representative
day, based on data gathered from year 2015 [14] which
are scaled up according to the EU 2050 reference
scenario [13]. In order to create system and household
level inflexible load profiles, the total load profile of
year 2015 [14] is split into residential, industrial and
commercial load, according to Synthetic Load Profiles
(SLPs) [15]. Synthetic load profiles are normalized
electricity consumption time series with 15-minute



resolution that are publicly available for the residential
and non-residential sectors. The load profiles are scaled
up to the year 2050 according to the EU 2050 reference
scenario [13].

Two categories of residential SLPs (S21 and S22)
are used for describing two categories of households.
According to the data, 82% of the grid connections
correspond to S21 households, and 18% correspond
to S22 households [16]. Profile S21 exhibits its
consumption peak during the day, while profile S22
during the night. Renewable profiles (wind and solar
production) for each season are computed as the means
of historical forecasts based on data from the year 2015
[14]. These profiles are scaled up according to the
projected value of the year 2050 [13].

Regarding short-term uncertainty, we create a
scenario tree for each season that represents the random
evolution of renewable supply in real time. Only
two outcomes of solar supply are considered per time
stage: high (under-forecast, indicated as H) or low
(over-forecast, indicated as L). The probability of
under/over-forecast and the average relative error at each
time stage are estimated based on the historical data of
year 2015. The solar production in each scenario s ∈ S
is therefore scaled up or down based on the relative error
observed at each time stage.

Finally, we consider eight different household types
depending on whether these types follow profiles S21 or
S22, own a battery or not, and own solar panels or not.
Their characteristics are presented in Table 1. Only 25%
of the households are assumed to be equipped with solar
panels, with a power rating of 2.5 kW. Moreover, one
third of these households is equipped with a large battery
while one other third is equipped with a smaller battery,
while one third does not own any battery. The technical
specifications of household batteries are presented in
Table 2.

6.2. System-Level Load Duration Curve

In order to create a menu of options, we approximate
the system-level load duration curve using the model of
section 3. We present the resulting demand functions
for the first household type in Figure 2. The demand
functions of each type are then aggregated, according to
the number of households in each type. We thus obtain
a system-level demand function, which is generally not
concave. In order to derive the concave functions Vl(t)
in Eq. 13 of problem (CPl), which approximate the
system-level demand function, we use a least-square
fit that respects the concavity of Vl(t). The concave
approximation of this system-level demand function is
presented in Figure 3.
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Figure 2. Demand functions for the first household

type. The x-axis corresponds to the time period of

the load duration curve, the y-axis represents the fuse

limit. Darkness indicates valuation for an increment

of fuse capacity, ranging from 0 to 500 e/MWh.

6.3. Optimal Menus

After computing the system-level load duration
curve, we solve the MILP formulation of the Stackelberg
equilibrium presented in section 4.4 in order to derive
a priority service and a multilevel demand subscription
menu. Indeed, since priority service pricing is a special
case of multilevel demand subscription, the same MILP
formulation can be used for designing a priority service
menu. This optimal set of options is presented in Table
3.

In order to compare priority service and multilevel
demand subscription consistently, we fix the price and
reliability of multilevel demand subscription options
that cover the full duration of service. By doing so,
the set of options under multilevel demand subscription
includes the set of options under priority service. The
resulting optimal multilevel demand subscription menu
is presented in Table 4.

6.4. Household Contract Choices

Table 5 presents the optimal subscription to the
priority service menu, while table 6 presents the
subscription under multilevel demand service. By
comparing the energy and capacity rows of the two
tables, we observe that the total subscribed capacity of
each household under multilevel demand subscription is
higher than under priority service. On the other hand,
the subscribed energy is less. This observation is driven
by the offer of options with shorter duration in multilevel



Table 1. Characteristics of different household types.
Household Type Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8
SLP Category S21 S22 S21 S22 S21 S22 S21 S22
Solar Panels Yes Yes Yes Yes Yes Yes No No
Battery Size Large Large Small Small No No No No

Proportion (%) 6.83 1.5 6.83 1.5 6.83 1.5 61.5 13.5

Table 2. Specifications of household batteries.
Battery Capacity Power Efficiency
Type Limit [kWh] Limit [kW] [%]

Large[17] 13.5 5 95
Small[18] 3.84 0.85 95
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Figure 3. Concave approximation of the system-level

demand function.

demand subscription. Consequently, multilevel demand
subscription is not only advantageous for households,
by allowing higher peak capacity when needed, but is
also favorable for the producer, because the subscribed
energy demand is closer to the real consumption of
households. Moreover, multilevel demand subscription
allows the consumer to face a lower total cost
(corresponding to the sum of the service procurement
cost and shortage cost) than under priority service
pricing. This is due to the fact that multilevel demand
subscription expresses the valuation of the consumer
more accurately.

Table 3. Optimal priority service menu.
Reliability [%] Price [e/kW-month]

58.5 26.4
85.3 39.3
100.0 48.5

Table 4. Optimal multilevel demand subscription

menu.
Reliability [%] Duration [%] Price [e/kW-month]

33.3 14.9
58.5 66.7 22.9

100 26.4
33.3 22.1

85.3 66.7 34.1
100 39.3
33.3 27.3

100.0 66.7 42.1
100 48.5

7. Conclusion

This paper focuses on the design of priority service
and multilevel demand subscription as two demand
response options for mobilizing flexible residential
demand. We present a method for the utility to
approximate the system load duration curve. We then
derive a MILP formulation of the bilevel Stackelberg
equilibrium for designing the two menus. Finally, we
express the menu selection problem of households. We
conduct a realistic case study of the Belgian market,
and find that households can better match their energy
consumption under multilevel demand subscription:
they subscribe to less energy, and more capacity than
under priority service pricing and therefore incur less
total cost.
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