

Ammonia Production

HIGHLIGHTS

Ammonia - Ammonia is critical in the manufacturing of fertilizers, and is one of the largestvolume synthetic inorganic chemicals produced worldwide. Moreover, ammonia is an ideal carbon-free energy carrier and storage material¹.

Processes and technology status – The main industrial procedure for the production of ammonia is Haber–Bosch process. In this process, nitrogen (N₂) reacts with hydrogen (H₂) under high pressures of 150 to 200 bar and temperature 500 °C. The overall reaction is N₂ + $3H_2O \rightarrow 2NH_3 + 3/2O_2$. Feedstock for the Haber process are air and natural gas to supply N₂ and H₂ respectively. The other raw materials are coal and naphtha ². Novel electric assisted technologies such as direct electrochemical ammonia synthesis and solid oxide electrolyzers are, also, under development ³.

Cost - Capital investment for conventional Haber–Bosch facilities are essentially equivalent at 276.11¹ M \in_{2017} for 2000-tpd capacity. Grundt et al. estimated capital expenses of 176.99 M \in_{2017} for a 1000 tpd ammonia facility ⁴.

Potential and barriers – Ammonia has the potential of being a carbon-free energy carrier. As the barrier, ammonia production requires high pressures and temperatures utilizing a large amount of energy and generating significant CO_2 emissions ⁵.

Process overview - Today, most large scale ammonia is produced by the Haber– Bosch process which is an artificial nitrogen fixation process as shown in figure 1. In this process, N₂ and H₂ gases are allowed to react at pressures of 200 bar and temperatures around 500 °C 2 . The stoichiometric value of feedstocks are 1:3 of N₂:H₂ 6 . The conventional Haber Bosch plants produce ammonia using natural gas (50%), oil (31%) or coal (19%) as feedstock ⁷. Natural gas is the preferred feedstock for ammonia production due to its low price

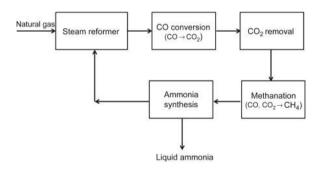
¹ Converted from Dollars to Euros,1 € 2017 = 1.13 \$ 2017

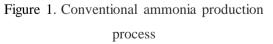
and wide availability. Moreover, other feedstocks such as coal and naphtha, release more than double GHGs amount, making them less attractive ⁸.

Reforming – Following the first step of natural gas feed desulphurization, the natural gas is reacted with steam to produce an equilibrium mixture of H_2 , CO, CO₂, and CH₄. This reaction is endothermic, so it is carried out in tubular reactors placed in a heated furnace in order to supply the heat for the reaction and to maximize the equilibrium content of the desired products H_2 and CO.

 N_2 from air - Following steam reforming, air is added to supply the N_2 required for ammonia production, while the O_2 from the air converts the remaining CH₄ in an exothermic reaction that increases the temperature and the H₂ and CO content further. Since all oxygen-containing molecules poison the ammonia synthesis catalyst, CO₂ is subsequently removed by absorption and a final CO/CO₂ cleanup is carried out.

Compression and the main


reaction - The dried synthesis gas is


Provided by Talieh Rajabloo talieh.rajabloo@uhasselt.be

compressed then is entered into the ammonia reactor. Ammonia synthesis is an equilibrium-limited exothermic reaction, and the ammonia product is favored by low temperature and high pressure. Most of the N_2 and H_2 passes unreacted through the reactor, and must be recycled in the loop after being cleaned for ammonia ⁹.

Investment and production costs -

The price of ammonia is closely related to the price of the feedstock. Haber–Bosch production cost is equal to $80.36 \ \epsilon_{2019}^2/t$ for natural gas feed and $199.11 \ \epsilon_{2019}/t$ for hydrogen by water electrolysis ¹⁰. Capital investment for conventional Haber–Bosch facilities are essentially equivalent at $276.11^3 \ M \epsilon_{2017}$ for 2000-tpd capacity ⁴. Grundt et al. estimated capital expenses of $176.99 \ M \epsilon_{2017}$ for a 1000 tpd ammonia facility ⁴.

³ Converted from Dollars to Euros, $1 \in {}_{2017} = 1.13$ \$ 2017

² Converted from Dollars to Euros,1 €₂₀₁₉ = 1.12 \$ $_{2019}$ ¹⁵

E P O C – Chemical sector decarbonization

Carbon capture and storage (CCS)

in ammonia production - Ammonia mainly used in the fertilizer industry and that is responsible for around 2-3 % of the world greenhouse gas emissions¹¹. A modern, optimized and highly efficient methane-fed Haber-Bosch process emits 1.5-1.6 t_{CO2-eo}/t_{NH3} making the global manufacturing of ammonia accounting for 1.2% of anthropogenic CO₂ emissions. The CO₂ emissions stream released from the primary reformer have high purity of approximately 99% CO₂. CO₂ emissions are regularly captured at ammonia facilities to produce urea and is not contributed to environmental emissions nor available for CO_2 capture and storage (CCS). Hence, CCS can be investigated for the combustion emissions from the primary reformer ¹². For the natural gas fed process yielding an energy efficiency around 65 %, the overall life cycle emissions can be reduced to 0.79 kg_{CO2}/kg_{NH3} with CO₂ capture compared to $1.6 \text{ kg}_{\text{CO2}}/\text{kg}_{\text{NH3}}$ without capture ¹¹.

Energy requirements of ammonia

production - Approximately 2/3 of consumed natural gas is used as a feedstock, while around 1/3 is used for energy purposes ¹³. The conventional highly optimized Haber–Bosch process

Provided by Talieh Rajabloo talieh.rajabloo@uhasselt.be

Technology Brief May 2021

uses about 7.9 kWh of energy derived from fossil fuels per kg NH_3 at the scale of 1,000 t/day, where 2.0 kWh/kg is used for pressurization, heating, pumping and so on. This number will be higher at a smaller scale due to the increased heat losses ¹⁰. The minimum energy requirement for the Haber-Bosch process, defined as the heat of combustion of ammonia, is 18.6 GJ/t_{NH3} based on the lower heating value of ammonia (LHV). For the methane fed process, the theoretical minimum energy input is 22.2 GJ/ t_{NH3} broken down as 17.7 GJ/t_{NH3} associated to the methane feedstock and 4.5 GJ/t_{NH3} associated to methane fuel to fire the steam methane reforming (SMR) reactor ⁷. For comparison purposes, the requirement for the direct energy electrochemical synthesis of NH₃ from liquid water and nitrogen at 25 °C and 1 bar is 19.9 GJ/ t_{NH3} (1.17 volts) ⁷.

Ammonia as an energy storage molecule - Ammonia is an ideal carbonfree energy storage molecule due to its high energy density (4.32 kWh/L), high weight fraction of hydrogen (17.65%) and ease of liquefaction under mild conditions ¹. Energy storage in the ammonia chemical bonds would enable a much greater uptake of intermittent renewable power sources

helping to balance the seasonal energy demands in a carbon-free society ⁷. Furthermore, green ammonia has emerged as a promising fuel option especially for long-distance shipping because of its low carbon footprint ³.

Electrification of ammonia

production - One promising solution to decarbonization of ammonia production is to generate hydrogen from water electrolysis using electricity originated from solar or wind sources ¹⁴. Figure 2 difference depicts the between conventional methane-fed and electrified Haber-Bosch process for ammonia production. Switching the hydrogen method from methane production to hydropower-electrolysis reduces the CO₂ emissions from 1.5 to 0.38 t_{CO2-eq}/t_{NH3} (75% decrease). Assuming that the electricallydriven Haber-Bosch process requires a 38.2 GJ/t_{NH3}, a wind powered ammonia process will have a carbon intensity of 0.12–0.53 t_{CO2-eq}/t_{NH3} ⁷.

Novel ammonia production

processes – Ligno-cellulosic biomass can be used as a source of hydrogen for ammonia production⁸. The other option is the development of alternative methods of production such as plasma reactions and electrochemical processes. Moreover, using semiconductors with sunlight to drive Solar photocatalytic reactions in а Ammonia Refinery is another approach being pursued to realize environmentally friendly ammonia synthesis¹⁴.

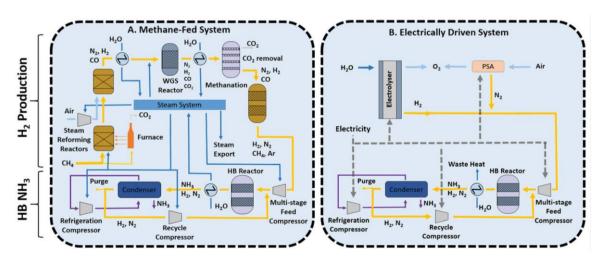


Figure 2. Schematic difference between conventional methane-fed (A) and electrified (B) Haber Bosch process for ammonia production ⁷.

Provided by Talieh Rajabloo talieh.rajabloo@uhasselt.be

Technical Performance	Desulphurization of the	Reforming
	natural gas	
Energy type inputs	Natural gas, coal and naphtha	Natural gas, coal and naphtha
Output products	Desulphurized natural gas feed	H ₂ , CO, CO ₂ , and CH ₄
Environmental Impact		
Emitted CO ₂ For the natural gas fed process (kgCO ₂ /kgNH ₃)		0.79 with CO ₂ capture
		1.6 without capture
Costs		
Plant size of 2000 tpd*		276.11 M€2017
Plant size of 1000 tpd		176.99 M€2017
Energy requirements		Total heat
For the methane fed		22.2 GJ/t _{NH3}
For the direct electrochemical synthesis of NH ₃		19.9 GJ/t _{NH3}

Table1. Summary Table: Key ammonia production data

* ton per day

References

- Yao Y, Wang J, Shahid U Bin, et al. *Electrochemical Synthesis of Ammonia from Nitrogen* Under Mild Conditions: Current Status and Challenges. Vol 3. Springer Singapore; 2020. doi:10.1007/s41918-019-00061-3
- Arora P, Hoadley AFA, Mahajani SM, Ganesh A. Small-Scale Ammonia Production from Biomass : A Techno-Enviro- Economic Perspective. Published online 2016. doi:10.1021/acs.iecr.5b04937
- Al-Aboosi FY, El-Halwagi MM, Moore M, Nielsen RB. Renewable ammonia as an alternative fuel for the shipping industry. *Curr Opin Chem Eng*. 2021;31:100670. doi:10.1016/j.coche.2021.100670
- 4. Pfromm PH. Towards sustainable agriculture : fossil-free ammonia Keywords 1 Introduction.
- Ammonia plant revamp to decarbonize: Yara Sluiskil AMMONIA INDUSTRY. Accessed July 28, 2020. https://ammoniaindustry.com/ammonia-plant-revamp-to-decarbonize-yarasluiskil/
- 6. Smith C, Torrente-Murciano L. Exceeding Single-Pass Equilibrium with Integrated Absorption Separation for Ammonia Synthesis Using Renewable Energy—Redefining the Haber-Bosch Loop. *Adv Energy Mater.* 2021;11(13). doi:10.1002/aenm.202003845
- Smith C, Hill AK, Torrente-Murciano L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. *Energy Environ Sci*. 2020;13(2):331-344. doi:10.1039/c9ee02873k

Provided by Talieh Rajabloo talieh.rajabloo@uhasselt.be **E P O C** – Chemical sector decarbonization

- 8. Gençer E, Burniske GR, Doering OC, et al. Sustainable production of ammonia fertilizers from biomass. *Biofuels, Bioprod Biorefining*. 2020;14(4):725-733. doi:10.1002/bbb.2101
- 9. Hellman A, Honkala K, Dahl S, Christensen CH, Nørskov JK. *Ammonia Synthesis: State of the Bellwether Reaction*. Vol 7. Elsevier Ltd.; 2013. doi:10.1016/B978-0-08-097774-4.00725-7
- 10. Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber Bosch process. *Nat Catal*. 2019;2(May):377-380. doi:10.1038/s41929-019-0280-0
- 11. Tock L, Perrenoud M. Thermo-environomic Evaluation of the Ammonia Production. 2015;93(February):356-362. doi:10.1002/cjce.22126
- 12. Young B, Krynock M, Carlson D, et al. Comparative environmental life cycle assessment of carbon capture for petroleum refining, ammonia production, and thermoelectric power generation in the United States. *Int J Greenh Gas Control*. 2019;91(October):102821. doi:10.1016/j.ijggc.2019.102821
- 13. Rizos V, Infelise F, Luchetta G, et al. *COMPOSITION AND DRIVERS OF ENERGY PRICES AND COSTS IN ENERGY INTENSIVE INDUSTRIES: THE CASE OF THE CHEMICAL INDUSTRY - AMMONIA.*; 2014.
- Qing G, Ghazfar R, Jackowski ST, et al. Recent Advances and Challenges of Electrocatalytic N2Reduction to Ammonia. *Chem Rev.* 2020;120(12):5437-5516. doi:10.1021/acs.chemrev.9b00659
- 15. Euro to US Dollar Spot Exchange Rates for 2019. Accessed May 7, 2021. https://www.exchangerates.org.uk/EUR-USD-spot-exchange-rates-history-2019.html